PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The model of prediction of the microstructure austenite C-Mn steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The subject of the work is analysis of author's model for prediction of austenite microstructure of C-Mn steel based on Sellar's solution. Design/methodology/approach: The present study adopts the Sellar's solution for C-Mn steel to the prediction of phenomena occurring in the steel and the grain size of austenite Findings: The developed model for the evolution of the austenite microstructure enables the correct determination of the grain size of austenite formed by multi-stage hot deformation. Research limitations/implications: The model is limitated only for selected steel group. Practical implications: The results obtained on the basis of this model will be utilized in the study for the determination of the distribution and state of microstructure in sections with complicated shapes after the rolling process. Originality/value: The modelling of microstructure is very importante problem. There are a lot of general models in literature, which can be used for predicting evolution of microstructure after rolling proces of steel, but the results obtained from them are different. There is a need for adapting the general model for a selected steel group to the prediction of phenomena occurring in the steel and the grain size of austenite formed by means of multi-stage deformation.
Rocznik
Strony
421--424
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
  • Institute of Modelling and Automation Plastic Working Processes, Częstochowa Univesity of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland, koczur@mim.pcz.czest.pl
Bibliografia
  • [1] B. Koczurkiewicz, A. Stefanik, H. Dyja, Prediction of austenite grain size after multi-stage rolling process lowcarbon steel, Proceedings of the Conference of the Department of Materials Engineering and Applied Physics, Częstochowa, 2004 (in Polish).
  • [2] B. Koczurkiewicz, Modelling mechanical properties of shapes from low-carbon steels. Mieżdunarodnaja nauchno-techniczeskaja konferencja, Teoria i technologia processow plasticheskieoi dieformacji-2004 MISiS Nauczna Szkoła OMD, K 85-lietnoi nauchnoj szkoly MISiS po obrabotkie metallow dawlieniem, Moskwa 2004.
  • [3] B. Koczurkiewicz, S. Mróz, H. Dyja, Modelling of mechanical properties of bulb bars 220 during hot rolling and regulated cooling processes, Materials Engineering 3 (2006) 757-760 (in Polish).
  • [4] A. Kawałek, B. Koczurkiewicz, G. Banaszek, H. Dyja, Modeling of the microstructure and mechanical properties of strips in the asymmetrical rolling process. Sovremennye Dostiżennija v teorii i tehnologii plasticheskoj obrabotki metallov, Trudy meżdunarodnoj nauchno-tehnicheskoj konferencii, Sankt-Petersburg Izdatelstvo Politehnicheskogo Universiteta (2005) 195-201.
  • [5] T. Shiro, O. Akio, S. V. S. Narayana Murty, N. Kotobu, Effect of strain on the microstructure and mechanical properties of multi-pass warm caliber rolled low carbon steel, Scripta Materialia 54 (2006) 563-568.
  • [6] M. Phaniraj, B. Prabhakar, B. Binod, A. K. Lahiri, Thermomechanical modeling of two phase rolling and microstructure evolution in the hot strip mill: Part-II. Microstructure evolution, Journal of Materials Processing Technology 178 (2006) 388-394.
  • [7] Z. Kuzmiński, A. Nowakowski, P. Śmiały, Physical simulation of strip and sheet hot rolling process with application of torsion plastometer, Mettalurgist 10 (2006) 444-449 (in Polish).
  • [8] St. Kajzer, R. Kozik, R. Wusatowski, Priciples of metal forming processes, Gliwice, 1997 (in Polish).
  • [9] H. Matsuda, H. K. D. H. Bhadeshia, Avrami theory for transformations from non-uniform austenite grain structures Materials Science and Technology 19 (2003) 234-238.
  • [10] C. M. Sellars, The Physical Mettalurgy of Hot Working, in: Hot Working and Forming Processes, edited by C. M. Sellars and G. J. Davies, the Metal Society, London (1980) 3-15.
  • [11] M. Militzer, M. G. Mecozzi, J. Sietsma, S. van der Zwaag, Three-dimensional phase field modelling of the austenite-toferrite transformation, Acta Materialia 54 (2006) 3961-3972.
  • [12] A. K. Lis, Principles of high fracture toughtness formation of ultra low carbon bainitic steel, Częstochowa, 1998 (in Polish).
  • [13] B. Dutta, C. Sellars, E. Valdes, Mechanism and kinetics of strain include precitation of Nb(C,N) in austenite,1991.
  • [14] W. Roberts, A. Sandberg, T. Siwecki, T. Werlfors, Procedings Conference Technology. and Application of HSLA Steels, Philadelphia (1993) 67-85.
  • [15] P. D. Hodgson, R. K. Gibbs, The Iron and Steel Institute of Japan International 32 (1992) 1329-1338.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.