PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of transport phenomena in gas tungsten arc welding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Since numerical heat transfer and fluid flow models have provided significant insight into welding process and welded materials that could not been achieved otherwise, there has been an important interest in the quantitative representation of transport phenomena in the weld pool. On the other hand, the temperature and velocity distributions of the molten metal as well as the cooling rate after welding operation affect the weld geometry, the microstructure, and the mechanical properties of weld zone. This work demonstrates that the application of numerical transport phenomena can significantly add to the quantitative knowledge in welding and help the welding community in solving practical problems. Design/methodology/approach: The temperature and velocity fields are simulated using the solution of the equations of conversation of mass, energy and momentum in three-dimension and under steady-state heat transfer and fluid flow conditions. Findings: The weld pool geometry and various solidification parameters were calculated. The calculated weld pool geometries were in good agreement with the ones obtained using the experiments. The solidification parameters of G and G/R are determined. It is found that as the welding speed increases, the value of G/R at the weld pool centerline decreases. Research limitations/implications: Welding process used is this study is gas tungsten arc (GTA) welding and base metal is commercial pure aluminum. This model can be investigated to simulate other materials and welding processes. Also the results of this study such as the temperature field can be used in the simulation of microstructure, mechanical properties, etc of welding zone. Originality/value: In this research the solidification parameters of G, R and G/R can be used for prediction of the solidification morphology and the scale of the solidification structure.
Rocznik
Strony
417--420
Opis fizyczny
Bibliogr. 17 poz., il., wykr.
Twórcy
autor
autor
  • Materials Science and Engineering Department, Sharif University of Technology, Azadi Ave., Tehran, Iran, farzadi@mehr.sharif.edu
Bibliografia
  • [1] S. Kou, D. K. Sun, Fluid flow and weld penetration in stationary arc welds, Metallurgical Transaction A 16A (1985) 203-213.
  • [2] K. Mundra, T. DebRoy, K. M. Kelkar, Numerical prediction of fluid flow and heat transfer in welding with a moving heat source, Numerical Heat Transfer, Part A 29 (1996) 115-129.
  • [3] S. Kou, Y. H. Wang, Computer simulation of convection in moving arc weld pools, Metallurgical Transaction A 17A (1986) 2271-2277.
  • [4] W. Zhang, G. G. Roy, J. W. Elmer, T. DebRoy, Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel, Journal of Applied Physics 93 (2003) 3022-3033.
  • [5] X. He, P. W. Fuerschbach, T. DebRoy, Heat transfer and fluid flow during laser welding of 304 stainless steel, Journal of Physics D: Applied Physics 36 (3002) 1388-1398.
  • [6] A. De, T. DebRoy, Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization, Journal of Physics D: Applied Physics 37 (2004) 140-150.
  • [7] X. He, J. W. Elmer, T. DebRoy, Heat transfer and fluid flow in Laser microwelding, Journal of Applied Physics 97 (2005) 1-9.
  • [8] H. Zhao, T. DebRoy, Weld metal composition change during conduction mode laser welding of aluminum alloy 5182, Metallurgical Transaction B 32B (2001) 163-172.
  • [9] S. Mishra, S. Chakraborty, T. DebRoy, Probing liquation cracking and solidification trough modeling of momentum, heat, and solute transport during welding of aluminum alloys, Journal of Applied Physics 97 (2005) (1-9).
  • [10] Z. Yang, S. Sista, J. W. Elmer, T. DebRoy, Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium, Acta Materialia 48 (2000) 4813-4825.
  • [11] J. W. Elmer, T. A. Zhang, B. Wood, T. DebRoy, Kinetic modeling of phase transformations in the occurring in the HAZ of C-Mn steel welds based on direct observations, Acta Materialia 51 (2003) 3333-3349.
  • [12] A. Kumar, T. DebRoy, Calculation of three-dimensional electromagnetic force field during arc welding, Journal of Applied Physics 94 (2003) 1267-1277.
  • [13] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemispher, Washington-New York-London, 1980.
  • [14] J. E. Hatch, Aluminum: Properties and Physical Metallurgy. Metals Park, Ohio: American Society for Metals, 1984.
  • [15] C.-P. Hong, Computer Modeling of Heat and Fluid Flow in Materials Processing. Institute of Physics Publishing, Bristol and Philadelphia, 2004.
  • [16] FLUENT Inc., FLUENT User's Guide. 2001.
  • [17] S. Kou, Welding Metallurgy. Second Edition, Wiley Interscience, New Jersey, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.