PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure of ultrafine-grained Al produced by severe plastic deformation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The structure of Al subjected to severe plastic deformation by means of compression with oscillatory torsion and by combined method (compression followed by compression with oscillatory torsion) were investigated. Design/methodology/approach: Al samples were deformed at torsion frequency (f) changed from 0 Hz (compression) to 1.6 Hz under a constant torsion angle (α) ≈ 6° and compression speed (v)=0.1mm/s. For combined methods the samples were compressed for strain ε = 0.7 and next deformed at mentioned parameters of compression with oscillatory torsion. Structural investigations were conducted by using light microscopy (LM) and transmission electron microscopy (TEM). Findings: The structural analysis made by TEM shows that the processing by compression with oscillatory torsion ensures obtaining a structure (at selected parameters) with a mean grain size ≈ 1.6 µm. Combined methods of deformation lead to grain refinement to about ≈ 0.9µm moreover material with uniform ultra-fine grained (UFG) microstructure was obtained. Research limitations/implications: The understanding in refinement of Al structure could help to modify the process and design deformation parameters. Practical implications: The knowledge of the characteristic features of unconventionally deformed materials will provide the usefulness of the employed method to produce materials having the desirable functional properties. Originality/value: Oscillatory compression is a deformation procedure applied to achieve large strains. However there is no studies on evolution of the microstructures during deformation by using mentioned mode. This paper provides these information's.
Rocznik
Strony
409--412
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
autor
  • Department of Materials Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, kinga.rodak@polsl.pl
Bibliografia
  • [1] M. Greger, R. Kocich, L. Cizek, L. A. Dobrzański, M. Widomska, B. Buretowa, A. Silbernagel, The structure and properties of chosen metals after ECAP, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 103-106.
  • [2] Z. Gronostajski, K. Jaśkiewicz, Influence of monotonic and cyclic deformation sequence on behavior of CuSi3.5 silicon bronze, Proceedings of the 11th International Scientific Conference „Achivements in Mechanical and Materials Engineering” AMME’2002, Gliwice-Zakopane, 2002, 219-222.
  • [3] N. Hansen, X. Huang, R. Ueji, N. Tsuji, Structure and strength after large strain deformation, Materials Science and Engineering A387-389 (2004) 191-194.
  • [4] K. J. Kurzydłowski, Hydrostatic extrusion as a methods of grain refinement in metallic materials, Materials Science Forum 503-504 (2006) 341-348.
  • [5] M. Richter, Q. Liu, N. Hansen, Microstructural evolution over a large strain range in aluminium deformed by cyclic extrusion compression, Materials Science and Enginering A260 (1999) 275-283.
  • [6] G. Niewielski, D. Kuc, K. Rodak, F. Grosman, J. Pawlicki, Influence of strain on the copper structure dunder controlled deformation path conditions, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 109-112.
  • [7] M. Richert, B. Leszczyńska, Structure and properties of dynamically compressed Al99.5 and AlCuZr alloy, Journal of Alloys and Compounds 382 (2004) 305-310.
  • [8] K. Rodak, Ultrafine grained Cu processed by compression with oscillatory torsion, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 491-494.
  • [9] K. Rodak, Microstructure of severely deformed Cu by using oscillatory compression method, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 179-182.
  • [10] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189.
  • [11] B. Leszczyńska, M. Richert, High strain rate effect on mechanical properties and structure refinement in aluminium and copper, Ore Metals 50 (2005) 586-589.
  • [12] G. Sakai, Z. Horita, T. G. Langdon, Grain refinement and superplasticity in aluminum alloy processed by high-pressure torsion, Materials Science and Engineering A393 (2005) 344-351.
  • [13] N. Krasilnikov, W. Lojkowski, Z. Pakiela, R. Valiev, Tensile strength and ductility of ultra-fine-grained Nikel processed by severe plastic deformation, Materials Science and Engineering A397 (2005) 330-337.
  • [14] B. Mingler, H. P. Karnthaler, M. Zehetbauer, R. Z. Valiev, Materials Science and Engineering A319-321 (2001) 242-245.
  • [15] A. P. Zhilyaev, B. K. Kim, J. A. Szpunar, M. D. Baro, T. G. Langdon, The microstructural characteristics of ultrafine-grained nickel, Materials Science and Engineering A391 (2005) 377-389.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.