PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural refinement of Al before compression with oscillatory torsion process

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present study is aimed at a quantitative description of microstructural parameters as a average subgrain size, subgrain width and length of Al deformed by using compression test at ε=0.8 with the next annealing. Conventional compression followed by annealing as a preliminary stage for compression with oscillatory torsion should contribute to refining grain size. Design/methodology/approach: Al samples were compressed in room temperature to a true strain of 0.8 and next annealed at 250 °C for 1 min and 1h. Structural investigations were conducted by using light microscopy (LM) and transmission electron microscopy (TEM). Findings: Compression leads to the formation of elongated subgrains bounded by microbands. The average subgrain size increase steadily with annealing time. The aspect ratio (R) of the grain length and the grain width is high initially especially for the as compressed materials and decreasing significantly after annealing. On annealing the deformed material, dislocation recovery occurs, leading to reductions in dislocation density both at grain boundaries and within the grains. Some of the dislocations arrange to form small eqiuaxed subboundaries. Research limitations/implications: An increase of the contribution of grain boundary (by using method of preliminary refining structure of Al) to the deformation process by compression with oscillatory torsion may influence on more refining Al structure than compression with oscillatory torsion only. Originality/value: Contributes to research on deformation procedure to achieve a refine structure of metals.
Rocznik
Strony
357--360
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
  • Department of Materials Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, kinga.rodak@polsl.pl
Bibliografia
  • [1] M. Greger, R. Kocich, L. Cižek, L. A. Dobrzański, M. Widomska, B. Buretowa, A. Silbernagel, The structure and properties of chosen metals after ECAP, Journal of Achievements In Materials and Manufacturing Engineering 18 (2006) 103-106.
  • [2] N. Hansen, X. Huang, R. Ueji, N. Tsuji, Structure and strength after large strain deformation, Materials Science and Engineering A387-389 (2004) 191-194.
  • [3] G. Niewielski, D. Kuc, K. Rodak, F. Grosman, J. Pawlicki, Influence of strain on the copper structure under controlled deformation path conditions, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 109-112.
  • [4] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing, Acta Materialia 11 (1997) 4733-4741.
  • [5] M. Richter, Q. Liu, N. Hansen, Microstructural evolution over a large strain range in aluminum deformed by cyclic extrusion compression, Materials Science and Enginering A 260 (1999) 275-283.
  • [6] K. J. Kurzydłowski, Microstructural refinement and properties of metals processed by severe plastic deformation, Bulletin of the Polish Academy of Science 52 (2004) 301-31.
  • [7] K. Rodak, Ultrafine grained Cu processed by compression with oscillatory torsion, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 491-494.
  • [8] K. Rodak, Microstructure of severely deformed Cu by using oscillatory compression method, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 179-182.
  • [9] K. J. Kurzydłowski, M. Richert, On the mechanism of nanograins formation in cold-plastic deformation conditions, Materials Engineering 4 (2005) 189-193.
  • [10] H. Paul, Shear bands formation in C-oriented aluminum single crystals, Materials Engineering 5 (2001) 704-707.
  • [11] M. Richert, J. Richert, S. Hawryłkiewicz, A. Wusatowska, Microstructure of heavy deformed materials, Materials Engineering 5 (2001) 776-779 (in Polish).
  • [12] M. Richert, Statical processes of reconstruction deformed Al monocrystal, Ore Metals 10 (1999) 493-499 (in Polish).
  • [13] D. Jia, K. T. Ramesh, E. Ma, Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Materialia 51 (2003) 3495-3509.
  • [14] X. Huang, N. Hansen, Flow stress and microstructures of fine grained copper, Materials Science and Engineering A 387-389 (2004) 186-190.
  • [15] U. Chakkingal, P. F. Thomson, Development of microstructure and texture during high temperature equal channel angular extrusion of aluminum, Journal of Materials Processing Technology 117 (2001) 169-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.