PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DMTA method in determining strength parameters of acrylic cements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the results of investigations of dynamic properties for bone cement with different fillers by means of DMTA method. Addition of any substance causes the change in mechanical properties. Pure PALAMED material and material filled with four different fillers have been analysed. Design/methodology/approach: One of the methods of thermal analysis for polymeric materials has been used for investigations. DMTA method is based on the analysis of the signal (reaction) from the deformed material under particular conditions, at the changeable ambient temperature as well as vibrations frequency and amplitude. DMTA thermograms give information on change in storage modulus E' and the mechanical loss factor tgδ, which is responsible for dissipation of energy during deformation. Pure cement as well as the cement filled with: BiO-OSS and PORESORB bone graft substitute materials, Al2O3 ceramic material and powdered animal bones. Method of specimen preparation and proportion in which the specimens were prepared are presented in the text. Practical implications: As it results from the literature analysis, no investigations of such a wide group of fillers, both organic and inorganic have been carried out yet. The investigations enabled the storage modulus and tgδ to be determined for each of the prepared materials, thus to indicate the material whose properties enable this material to be used in further alloplasty surgeries for hip joint. Practical application of the results of the investigations described in this paper will be possible after long and comprehensive clinical trials. Originality/value: Original value of this paper are the results of tests since such an analysis has never been conducted by scientific environment working on this subject.
Rocznik
Strony
309--312
Opis fizyczny
Bibliogr. 17 poz., il., wykr.
Twórcy
autor
autor
autor
  • Dapartment of Polymer Processing and Production Management, Czestochowa University of Technology, ul. Armii Krajowej 19C, 42-200 Czestochowa, Poland, postawa@kpts.pcz.czest.pl
Bibliografia
  • [1] J. Charnley, Anchorage of femoral head prosthesis to the shaft of the femur, Journal of Bone and Joint Surgery 42-B (1960) 28-30.
  • [2] M. Jasty, W. J. Maloney, C. R. Bradgon, D. O'Conner, T. Harie, W. H. Harris, Histomorphological studies of the longterm skeltal responses to well fixed cemented femoral components, Journal of Bone and Joint Surgery 72A/8 (1990) 1220-1229.
  • [3] M. Jasty, W. J. Maloney, C. R. Bradgon, D. O'Conner, T. Harie, W. H. Harris, The initiation of failure in cemented femoral components of hip arthroplasties, Journal of Bone and Joint Surgery 73B/4 (1991) 551-558.
  • [4] L. D. T. Topoleski, A fractographic analysis of in vivo PMMA bone cement failure mechanism, Journal of Biomedical Materials Research 24/2 (1990) 135-154.
  • [5] T. P. Culleton, P. J. Prendergast, D. Taylor, Fatigue failure in the cement mantle of an artificial hip joint, Clinical Materials 12/2 (1993) 95-102.
  • [6] A. Gnatowski, O. Suberlak, P. Postawa, Functional materials based on PA6/PVP blends, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 91-94.
  • [7] K. Ishihara, Hard tissue compatible polymers, Biomedical applications of polymeric materials, Boca Raton: CRC (1993) 143-62.
  • [8] M. Sadao, F. Kohtaro, I. Kazuhiko, N. Nobuo, Performance of adhesive bone cement containing hydroxyapatite particles. Biomaterials 19 (1998) 1601-1606.
  • [9] N. Nakabayashi, E. Masuhara, E. Mochida, I. Ohmori, Development of adhesive pit and fissure sealants using a MMA resin initiated by a tri-n-butyl borane derivative, Journal of Bone and Joint Surgery 12 (1978) 149-65.
  • [10] H. F. El-Sheikh, B. J. MacDonald, M. S. J. Hashmi, Material selection in the design of the femoral component of cemented total hip replacement. Journal of Materials Processing Technology 122 (2002) 309-317.
  • [11] G. Lewis, Relative roles of cement molecular weight and mixing method on the fatigue performance of acrylic bone cement, simplex P versus osteopal. Journal of Biomedical Materials Research 53 (2000) 119-30.
  • [12] K. Kawagoe, M. Saito, T. Shibuya, T. Nakashima, K. Hino, H. Yoshikawa, Augmentation of cancellous screw fixation with hydroxyapatite composite resin (CAP) in vivo. Journal of Biomedical Materials Research 53 (2000) 678-84.
  • [13] S. Y. Kwon, Y. S. Kim, Y. K. Woo, S. S. Kim, J. B. Park, Hydroxyapatite impregnated bone cement: in vitro and in vivo studies. Biomedical Material Engineering 7 (1997) 129-40.
  • [14] A. Szarek, J. Szyprowski, Strength differences of some acrylic cements. Engineering of biomaterials 45 (2005) 24-29.
  • [15] A. Mervi, A. Puska, Anne K. Kokkari, Timo O. Narhi, Pekka K. Vallittu, Mechanical properties of oligomer-modified acrylic bone cement, Biomaterials 24 (2003) 417-425.
  • [16] P. Postawa, D. Kwiatkowski, Residual stress distribution in injection molded parts. Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 171-174.
  • [17] E. Bociąga, T. Jaruga, Visualization of melt flow lines in injection moulding, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 331-334.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.