PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of cyclic creep of surgical cements

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper suggests to adapt the research method of low cycle fatigue for modelling the loads and deformation on surgical cements in an artificial hip joint. Surgical cements have also been modified in order to improve their functional properties. Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamed cement without an addition and on samples made from cement modified with glassy carbon and titanium. The tests were conducted on a servohydraulic fatigue testing machine, MTS-810, with load control. Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests the phenomenon of cyclic creep was observed. Research limitations/implications: Modelling the loadings and deformations of cement in endoprostheses of joints with the low cycle fatigue method takes into account its all high value, while cement is being used for endoprostheses for many years in the conditions of random stress and deformation courses. Therefore the obtained deformation values are bigger than those which would have been obtained in real conditions in the same time. Practical implications: The low cycle fatigue tests carried out showed how important is the factor of time for the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assess its usability for endoprosthesoplasty of joints. The stem subsidence and remodeling of bone occurred in the course of the cement deformation. For the clinical practice the estimation of the deformation value of the cement and stem subsidence during the exploitation of the artificial hip joint is the important problem. Originality/value: The rheological phenomena in surgical cements, which is viscoelasticity material, occurred at low cycle fatigue tests. The deformation increase in the conditions of the cement creep is the fundamental phenomena.
Rocznik
Strony
281--284
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
autor
autor
  • Department of Materials Mechanics, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, alicja.balin@polsl.pl
Bibliografia
  • [1] K. D. Kühn, Bone Cements. Springer-Verlag Berlin Heidelberg, 2000.
  • [2] G. H. I. M. Walenkamp, D. W. Murray (Eds), Bone cements and cementing technique, Springer-Verlag Berlin Heidelberg, 2001.
  • [3] R. Będziński, Ingineering biomechanics, Press of Wrocław University, Wrocław 1997 (in Polish).
  • [4] A. Balin, Adaptive processess conditioned by materials and the durability of cements applied in bone surgery, Science Review of Silesian University (Mettalurgy) 69, Gliwice, 2004.
  • [5] J. D. Ferry, Viscoelastic Properties of polymers. New York-London, 1961.
  • [6] A. P. Wilczyński, Polymers mechanics in constructional practice. WNT, Warsaw, 1984, (in Polish).
  • [7] D. N. Yetkinler, A. S. Litsky, Viscoelastic behaviour of acrylic bone cements, Biomaterials 19 (1998) 1551-1559.
  • [8] D. F. Farrar, J. Rose, Rheological properties of PMMA bone cements during curing, Biomaterials 22 (2001) 3005-3013.
  • [9] D. W. A. Rees, Nutting creep in polymer composites, Journal of Materials Processing Technology 143-144 (2003) 164-170.
  • [10] J. Koszkul, J. Nabiałek, Viscosity models in simulation of the filling stage of the injection molding process, Journal of Materials Processing Technology, 157-158 (2004) 183-187.
  • [11] K. Saber-Sheikh, R. L. Clarke, M. Braden, Viscoelastic properties of some soft lining materials I-effect of temperature, Biomaterials 20 (1999) 817-822.
  • [12] G. Lewis, S. Janna, M. Carroll, Effect of test frequency on the in vitro fatigue life of acrylic bone cement, Biomaterials 24 (2003) 1111-1117.
  • [13] H. Murata, N. Taguchi, T. Hamada, J. F. McCabe, Dynamic viscoelastic properties and the age changes of long-term soft denture liners, Biomaterials 21 (2000) 1421-1427.
  • [14] Edited by H. Liebowitz, Fracture 7 Fracture of nonmetals and composites. N. Y., 1972.
  • [15] J. Töyräs, M. T. Nieminen, H. Kröger, J. S. Jurvelin, Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently, Bone 31/4 (2002) 503-507.
  • [16] P. J. Prendergast, S. A. Maher, Issues in pre-clinical testing of implants, Journal of Materials Processing Technology 118 (2001) 337-342.
  • [17] N. Verdonschot, R. Huiskes, Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction, Biomechanics 29/12 (1996) 1569-1575.
  • [18] Campbell’s Operative Orthopaedics, t. IV. The C. V. Mosby Company, St. Louis Washington, D. C. Toronto, 1987.
  • [19] P. Colombi, Fatigue analysis of cemented hip prosthesis: damage accumulation scenario and sensitivity analysis, International Journal of Fatigue 24 (2002) 739-746.
  • [20] A. O. Tonoyan, S. P. Davtian, S. A. Martirosian, A. G. Mamalis, High-temperature superconducting polymer-ceramic compositions, Journal of Materials Processing Technology 108 (2001) 201-204.
  • [21] I. S. Chronatis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review, Journal of Materials Processing Technology 167 (2005) 283-293.
  • [22] S. Mitura, K. Mitura, P. Niedzielski, P. Louda, V. Danilenko, Nanocrystalline diamond, its synthesis, properties and applications, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 9-16.
  • [23] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Żak, K. Wilczek, Usefulness of passive-carbon layer for implants applied in interventional cardiology, Journal of Materials Processing Technology 157-158 (2004) 399-404.
  • [24] X. Lu, Y. Leng, Electrochemical micromachining of titanium surfaces for biomedical applications, Journal of Materials Processing Technology 169 (2005) 173-178.
  • [25] A. Okada, Y. Uno, N. Yabushita, K. Uemura, P. Raharjo, High efficient surface finishing of bio-titanium alloy by large-area electron beam irradiation, Journal of Materials Processing Technology 149 (2004) 506-511.
  • [26] G. Lewis, J. Nyman, H. H. Trieu, The apparent fracture toughness of acrylic bone cement: effect of three variables, Biomaterials 19 (1998) 961-967.
  • [27] J. Graham, L. Pruitt, M. Ries, N. Gundian, Fracture and fatigue properties of acrylic bone cement, The Journal of Arthroplasty 15, 8 (2000) 1028-1035.
  • [28] G. Lewis, S. Mladsi, Correlation between impact strength and fracture toughness of PMMA-based bone cements, Biomaterials 19 (1998) 961-967.
  • [29] R. Y. Liang, J. Zhou, Energy based approach for crack initiation and propagation in viscoelastic solid, Engineering Fracture Mechanics 58 (1997) 71-85.
  • [30] S. S. Lee, Y. J. Kim, Time-domain boundary element analysis of cracked linear viscoelastic solids, Engineering Fracture Mechanics 51/4 (1995) 585-590.
  • [31] K. A. Mann, D. L. Bartel, T. M. Wright, A. Burstein, Coulomb frictional interfaces in modeling cemented total hip replacement: a more realistic model, Journal Biomechanics 28/9 (1995) 1067-1078.
  • [32] N. Verdonschot, R. Huiskes, Mechanical effects of stem cement interface characteristics in total hip replacement, Clinical Orthopaedics and Related Research 329 (1996) 326-336.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.