PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature field and failure analysis of die-casting die

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Dies for aluminium alloys die-casting fail because of a great number of a different and simultaneously operating factors. Some of them may be controlled to some extent by the die-casting experts. Design/methodology/approach: In the experimental part of our work the failures on the working surface of the fixed half of the testing die for die-casting of aluminium alloys were observed with the use of non-destructive testing methods: such as thermographic analysis, penetrants, and metallographic examination of polymeric replicas. Findings: In the process of the die-casting the primary source of loading is cyclic variation of the temperature; the influence of other loads is relatively insignificant. Research limitations/implications: For economical production of aluminium and aluminium alloys diecastings it is important that the dies have a long working life. The replacement of a die is expensive in both: money and production time. Practical implications: Beside, the die design, the material selection and the process thermal stress fatigue course, which is the consequence of the working conditions, the inhomogeneous and to low initial temperature of the die, contribute to the cracks formation. Originality/value: It is clearly seen from the presented thermographs, that the required temperatures and homogeneity of the temperature field of the discussed case are not possible to reach without the changing both: the heating method and the die design. Therefore in the first stage a solution of the problem should be in changing of the position of heating and/or cooling channels, i.e. their closer shifting to the working surface of the die.
Rocznik
Strony
182--187
Opis fizyczny
Bibliogr. 25 poz., il., wykr.
Twórcy
autor
autor
autor
  • Faculty of Natural Sciences and Engineering, University of Ljubljana, Askerceva 12, 1000 Ljubljana, Slovenia, borut.kosec@ntf.uni-lj.si
Bibliografia
  • [1] S. Kalpakjian, Tool and die failures-source book, ASM International, Metals Park, Ohio, 1982.
  • [2] B. Kosec, M. Sokovic, Failures on the working surface of aluminium die-casting die, Masinstvo 6 1 (2002) 23-28.
  • [3] R. N. Lumby, R. G. O’Donnel, D. R. Gunasegaram, M. Girard, New Heat Treatment for Al high pressure diecastings, Heat Treating Progress 6 (2006) 31-37.
  • [4] S. S. Manson, Thermal stress and low-cycle fatigue, McGraw-Hill, New York, 1996.
  • [5] L. A. Dobrzański, Technical and economical issues of materials selection, Silesian University of Technology, Gliwice, 1997.
  • [6] L. A. Dobrzański, Synergic effects of the scientific cooperation in the field of materials and manufacturing engineering, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 9-20.
  • [7] L. A. Dobrzański, Significance of materials science for the future development of societies, Journal of Materials Processing Technology 173 (2006) 133-148.
  • [8] B. Smoljan, An analysis of combined cyclic heat treatment performance, Journal of Materials Processing Technology 155 (2004) 1704-1707.
  • [9] J. V. Tuma, J. Kranjc, The tempeature distribution in the superheater tube, forschung in ingenieurwessen-Engineering Research 66 (2001) 153-156.
  • [10] L. Gusel, I. Anzel, M. Brezocnik, Effect of lubrication on the stress distribution in an extruded material, International Journal of Advanced Manufacturing Technologies 25 (2005) 288-291.
  • [11] L. Kosec, F. Kosel, Heat checking of hot work tools, Mechanical Engineering Journal 29 (1983) 151-158.
  • [12] Handbook of case histories in failure analysis, Volume 1, ASM International, Materials Park, Ohio, 1992.
  • [13] Böhler Edelstahlhandbuch auf PC V2.0, Kapfenberg, 1996.
  • [14] M. Gojic, L. Lazic, B. Kosec, M. Bizjak, Application of mathematical modelling to hardenability testing of low alloyed Mn-Mo steel, Strojarstvo 47 (2005) 101-108.
  • [15] L. Kosec, Tool steels from powders, IRT3000 1 (2006) 78-84 (in Slovene).
  • [16] J. V. Tuma, Properties and fracture of structural steels with yield stress 373-737 MPa in ambient to nil ductility temperature, Journal of Materials Processing Technology, 121 (2002) 323-331.
  • [17] L. A. Dobrzański, M. Krupiński, J. H. Sokolowski, Computer aided classification of flows occured during casting of aluminium, Journal of Materials Processing Technology 167 (2005) 456-462.
  • [18] L. A. Dobrzański, M. Krupiński, P. Zarychta, R. Maniara, Analysis of influence of chemical composition of Al-Si-Cu casting alloy on formation of casting deffects, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 475-478.
  • [19] S. Kumar, R. Singh, A Knowledge-based system of progressive die components, Journal of Achievements in Materials and Manufacturing Engineering 21 (2007) 53-56.
  • [20] B. Kosec, G. Kosec, Temperature field analysis on active working surface of the die-casting die, Metall 57 (2003) 134-136.
  • [21] L. Masalski, K. Eckersdorf, J. McGhee, Temperature measurement, John Wiley & Sons, Chichester, 1991.
  • [22] H. Haferkamp, F. W. Bach, M. Niemeyer, R. Veits, Thermogram Characteristics for process monitoring of permanent mould casting, Aluminium 75 (1999) 945-953.
  • [23] B. Kosec, G. Kosec, M. Sokovic, Case of temperature field and failure analysis of die-casting die, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 471-474.
  • [24] B. Kosec, J. Kopac, L. Kosec, Analysis of casting die failures, Engineering Failure Analysis 8 (2001) 355-359.
  • [25] B. Kosec, M. Sokovic, G. Kosec, Failure analysis of dies for aluminium alloys die-casting, Journal of Achievements in Materials and Manufacturing Engineering 13 (2005) 339-342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.