PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this work the effect of cooling rate on the size of the grains, SDAS, size of the β precipitation and thermal characteristic results of AC AlSi9Cu cast alloy have been described. The solidification process was studied using the cooling curve and crystallization curve at solidification rate ranging from 0,16 °Cs -1 up to 1,04 °Cs -1. Design/methodology/approach: The experimental alloy used in this investigation was prepared by mixing in suitable proportion the AC AlSi5Cu1(Mg) commercial alloys and two master alloys AlSi49 and AlCu55. Thermal analysis tests were made using the UMSA Technology Platform. Cooling curve thermal analysis was performed on all samples using high sensitivity thermocouples of K type that were protected in a stainless steel sheath and data were acquired by a high speed data acquisition system linked to a PC computer. Each chilled sample was sectioned horizontally where the tip of the thermocouple was located and it was prepared by standard grinding and polishing procedures. The final stage of polishing was done using commercial silicon oxide slurry. Optical microscopy was used to characterize the microstructure and intermetallic phases. Secondary dendrite arm spacing measurements were carried out using a Leica Q-Win ™ image analyzer. The UTM measurements were carried out using a Zwick testing machine. Findings: Increasing the cooling rate increases significantly the liquidus temperature, nucleation undercooling temperature, solidification range and decreases the recalescence undercooling temperature. Increasing cooling rate refines all microstructural features including secondary dendrite arm spacing (SDAS) and intermetallic compounds and improves silicon modification level. Research limitations/implications: The results presented in this paper show results only for the one alloy - AC AlSi9Cu, and for the assessment of the Silicon Modification Level didn't include the arrangement of a Si crystal in a matrix. Practical implications: The aim of this work is describe in detail the solidification process in a number of AC AlSi9Cu foundry alloy. Cooling rates applied in this experiment occur in cross section of a bloc engine. The results shows the effect of different cooling rates on the microstructural features and the characteristic parameters of the cooling curve of ACAlSi9Cu alloy. Originality/value: Original value of the work is applied the artificial intelligence for the assessment of the Silicon Modification Level.
Rocznik
Strony
105--112
Opis fizyczny
Bibliogr. 20 poz., il., wykr.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbińska, Analysis of intermetalic particles In AlSi1MgMn aluminum alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 155-158.
  • [2] L. A. Dobrzański, R. Maniara, J. H. Sokolowski, The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristic, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 217-220.
  • [3] M. Wierzbińska, J. Sieniawski, Effect of morphology of eutectic silicon crystals on mechanical properties and cleavage fracture toughness of AlSi5Cu1 alloy, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 31-36.
  • [4] M. Kciuk, Structure, mechanical properties and corrosion resistance of AlMg5 alloy, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 185-188.
  • [5] L. Y. Pio, S. Sulaimin, A. M. Hamouda, Grain refinement of LM6Al-Si alloy sand castings to enhance mechanical properties, Journal of Materials Processing Technology 162-163 (2005) 435-441.
  • [6] J. G. Kauffman, E. L. Rooy, Aluminum Alloy Castings, ASM International, Ohio 2005.
  • [7] S. G. Shabestari, M. Malekan, Thermal Analysis Study of the Effect of the Cooling Rate on the Microstructure and solidification parameters of 319 aluminum alloy, Canadian Metallurgical Quarterly 44 (2005) 305-312.
  • [8] L. A. Dobrzański, K. Labisz, R. Maniara, Microstructure investigation and hardness measurement in Al-Ti alloy with additions of Mg after heat treatment, Proceedings of the 13th International Scientific Conference on Achievements in Mechanical and Materials Engineering AMME'2005, Gliwice-Wisła, 2005, 147-150.
  • [9] Z. Li, A. M. Samuel, F. H. Samuel, C. Ravindran, S. Valtierra, H. W. Doty, Parameters controlling the performance of AA319-type alloys Part I. Tensile properties, Materials Science and Engineering 367 (2004) 96-110.
  • [10] S. G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys, Journal of Materials Processing Technology 153-154 (2004) 193-198.
  • [11] R. MacKay, M. Djurdjevic, J. H. Sokolowski, The effect of cooling rate on the fraction solid of the metallurgical reaction in the 319 alloy, AFS Transaction, 2000.
  • [12] C. H. Cáceres, M. B. Djurdjevic, T. J. Stockwell, J. H. Sokolowski, Cast Al: The effect of cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys, Scripta Materiala, 1999.
  • [13] J. M. Boileau, J. W. Zindel, J. E. Allison, The Effect of Solidification time on the mechanical properties in a cast A356-T6 aluminum alloy, Society of Automotive Engineers, Inc, 1997.
  • [14] P. Kumar, J. L. Gaindhar, DAS, Solidification time and mechanical properties of Al-11%Si alloys V-processed castings, AFS Transactions, 105, 1997.
  • [15] A. M. Samuel, A. Gotmare, F. H. Samuel, Effect of solidification rate and metal feedability on porosity and SiC/Al2O3 particle distributing in an Al-Si-Mg (359) alloy, Composite Science and Technology, 1994.
  • [16] L. Bäckerud, E. Król, J. Tamminen: Solidification characteristics of aluminum alloys, Vol. 1, Universitetsforlaget, Oslo, 1986.
  • [17] L. Bäckerud, G. Chai, J. Tamminen, Solidification characteristics of aluminum alloys, AFS, vol. 2, 1992.
  • [18] L. Bäckerud, G. Chai, Solidification Characteristics of aluminum alloys, Vol. 3, AFS, 1992.
  • [19] American Foundry Society, (AFS), Chart for microstructure control in hypoeutectic aluminum silicon alloys, American Foundry Society, Inc., Des Plaines, Illinois, 1990.
  • [20] http://www.uwindsor.ca/umsa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.