PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of temperature on tensile fracture mechanisms of a Ni-base superalloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The Ni-base superalloy GTD-111 is used in manufacturing of the first stage blades of powerful gas turbines (over 125MW). The alloy posses appropriate microstructure and high temperature properties through precipitation hardening heat treatment. Among the properties, tensile properties of the alloy have strong influence on stability and life of the blades. Design/methodology/approach: Tensile tests over a wide range of temperatures from 25 to 950°C with a constant strain rate of 10 -4s -1 were performed to study the tensile fracture mechanisms of the cast and heat treated superalloy. Scanning electron microscopy was used to provide structural and fractography evidence of the superalloy GTD-111at different temperatures. Findings: The fractography results of the tensile tested specimens were in good agreement with the variation in alloy ductility. Many fractography features such as: transgranular and intergranular fracture with fine dimples, cleavage facets and a combination of them were observed in the specimens tested at different temperatures. Research limitations/implications: Because fatigue is an important fracture mechanism at the service condition of the alloy it is suggested for future research to work on the simultaneous effects of tension and fatigue on the fracture mechanisms although, tensile properties alone are important for the alloy. Originality/value: It was found that different fracture mechanisms operated in different temperature ranges for example, while transgranular dimple fracture was dominant at 650°C, the dominant fracture mechanism at room temperature was intergranular.
Rocznik
Strony
34--40
Opis fizyczny
Bibliogr. 24 poz., il.
Twórcy
  • Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Vakil Abad Blvd., Mashhad, Iran, sajjadi@um.ac.ir
Bibliografia
  • [1] S. A. Sajjadi, S. M. Zebarjad, Study of fracture mechanisms of a Ni-Base superalloy at different temperatures, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 227-230.
  • [2] S. A. Sajjadi, S. Nategh, A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111, Materials Science and Engineering A 307 (2001) 158-164.
  • [3] S. A. Sajjadi, S. Nategh R. I. L. Guthrie, Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111, Materials Science and Engineering A 325 (2002) 484-489.
  • [4] S. Nategh, S. A. Sajjadi, Dislocation network formation during creep in Ni-base superalloy GTD-111, Materials Science and Engineering A 339 (2003) 103-108.
  • [5] Y. Zhang, Y. Wang, Z. Li, C. Zhou, in: International Conference on Strength of Metals and Alloys (ICSMA 8), Pergamon Press 2 (1988) 941.
  • [6] H. Gleiter, Zeitschrift fur Metallkunde 58 (1967) 306.
  • [7] L. K. Singhal, J. W. Martin, Acta Metallurgica 16 (1968) 947.
  • [8] S. A. Sajjadi, S. M. Zebarjad, R. I. L. Guthrie, M. Isac, Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters, Journal of Materials Processing Technology 175 (2006) 376-381.
  • [9] S. A. Sajjadi, S. Nategh, I. Isac, S. M. Zebarjad, Tensile Deformation Mechanisms at Different Temperaturs in the Ni-Base superalloy GTD-111, Journal of Materials Processing Technology 155-156 (2004) 1900-1904.
  • [10] D. Siebörger, H. Knake, U. Glatzel, Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases, Materials Science and Engineering A 298 (2001) 26-33.
  • [11] R. Jensen, J. K. Tien, Metallurgical Transactions A 16 (1985) 1049-1068.
  • [12] S. M. Copley, B. H. Kear, Trans. AIME 239 (1967) 984-992.
  • [13] D. Bettge, W. Osterle, J. Ziebs, Temperature dependence of additional cyclic hardening of a nickel-base superalloy during out-of-phase multiaxial deformation, Zeitschrift fur Metallkunde 86 (1995) 190-197.
  • [14] M. Dollar, I. M. Berstein, Superalloys 88 (1988) 275-284.
  • [15] E. Balikci, R. A. Mirshams, A. Raman, Fracture behavior of superalloy IN738LC with various precipitate microstructures, Materials Science and Engineering A 265 (1999) 50-62.
  • [16] G. Appa Rao, M. Srinivas, D. S. Sarma, Materials Science and Engineering A 418 (2006) 282-291.
  • [17] ASTM E8, Standard Test Methods for Tension Tests of Metallic Materials Metric, 1998.
  • [18] ASTM E21, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, 1998.
  • [19] N. F. Fiore, Rev. High Temp. Mat. 2 (1975) 373-408.
  • [20] F. Jiao et al. in: K. T. Rie (Ed.), Proceedings of the Conference on LCF and Elasto-Plastic Behavior of Materials, Elsevier Applied Science (1992) 298-303.
  • [21] D. L. Anton, Acta Metallurgica 32 (1984) 1669-1679.
  • [22] D. Sengupta, S. K. Putatunda, Scripta Metallurgica et Materialia 31 (1994) 1163-1168.
  • [23] M. B. Henderson, J. W. Martin, Influence of precipitate morphology on the high temperature fatigue properties of SRR99, Acta Metallurgica Materialia 43 (1995) 4035-4043.
  • [24] S. H. Ai, V. Lupinc, G. Onofrio, Influence of precipitate morphology on high temperature fatigue crack growth of a single crystal nickel base superalloy, Scripta Metallurgica et Materialia 29 (1993) 1385-1390.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.