PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photonics and Web Engineering 2011

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a digest of chosen technical work results shown by young researchers from different technical universities in this country during the SPIE-IEEE Wilga 2011 symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics and telecom, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for telecom, astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also an occasion for young researchers to meet together in a large group (under the patronage of IEEE) spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-92].
Twórcy
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] J. R. Just et al., „Highly parallel distributed computing systems with optical interconnections”, Microprocessing and Microprogramming, vol. 27, no. 1 - 5, pp. 489 - 493, 1989.
  • [2] A. Dybko et al., „Application of optical fibres in oxidation - reduction titrations”, Sensors and Actuators B, vol. 29, no. 1 - 3, pp. 374 - 377, 1995.
  • [3] A. Dybko et al., „Plymer track membranes as a trap support for reagent in fiber optic sensors”, Journal of Applied Polymer Science, vol. 59, pp. 719 - 723, 1996.
  • [4] A. Dybko et al., „Efficient reagent immobilization procedure for ion-sensitive optomembranes”, Sensors and Actuators B, vol. 34, no. 1, pp. 207 - 211, 1997.
  • [5] A. Dybko et al., „Assessment of water quality based on multiparameter fiber optic probe”, Sensors and Actuators B, vol. 51, pp. 208 - 213, 1998.
  • [6] J. Dorosz et al., „Fiber Optic Department of Biaglass”, Optica Applicata, vol. 28, no. 4, pp. 267 - 291, 1998.
  • [7] J. Dorosz et al., „Multicrucible technology of tailored optical fibers”, Optica Applicata, vol. 28, no. 4, pp. 293 - 322, 1998.
  • [8] R. S. Romaniuk et al., „Multicore single-mode soft-glass optical fibers”, Optica Applicata, vol. 29, no. 1, pp. 15 - 49, 1999.
  • [9] R. S. Romaniuk, „Tensile strength of tailored optical fibers”, Optoelectronics Review, vol. 8, no. 2, pp. 101 - 116, 2000.
  • [10] R. S. Romaniuk, „Manufacturing and Characterization of ring-index optical fibers”, Optica Applicata, vol. 31, no. 2, pp. 425 - 444, 2001.
  • [11] A. Burd et al., „Pi of the Sky - automated search for fast optical transients over the whole sky”, Astronomische Nachrichten, vol. 325, no. 6 - 8, p. 674, 2004.
  • [12] A. Burd et al., „Pi of the Sky - all-sky, real-time search for fast optical transients”, New Astronomy, vol. 10, pp. 409 - 416, 2005.
  • [13] T. Czarski et al., „Cavity parameters identification for TESLA control system development”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 548, no. 3, pp. 283 - 297, 2005.
  • [14] R. S. Romaniuk et al., „Optical network and FPGA/DSP based control system for free electron laser”, Bulletin of the Polish Academy of Sciences, vol. 53, no. 2, pp. 123 - 138, 2005.
  • [15] T. Czarski et al., „TESLA cavity modelling and digital implementation in FPGA technology for control system development”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 556, no. 2, pp. 565 - 576, 2006.
  • [16] T. Czarski et al., „Superconducting cavity driving with FPGA controller”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 568, no. 2, pp. 854 - 862, 2006.
  • [17] B. Mukherjee et al., „Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons”, Radiation Protection Dosimetry, vol. 126, no. 1 - 4, pp. 256 - 260, 2007.
  • [18] W. Ackerman et al., „Operation of a free-electron laser from the extreme ultraviolet to the water window”, Nature Photonics, vol. 1, no. 6, pp. 336 - 342, 2007.
  • [19] T.R. Wolinski et al., „Photonics Society of Poland established”, Metrology and Measurement Systems, vol. 15, no. 2, pp. 241 - 245, 2008.
  • [20] R.S. Romaniuk et al., „Metrological aspects of accelerator technology and high energy physics experiments”, Measurement Science and Technology, vol. 18, no. 8, p. E01, 2008.
  • [21] P. Fąfara et al., „FPGA-based implementation of a cavity field controller for FLASH and X-FEL”, Measurement Science and Technology, vol. 18, no. 8, pp. 2365 - 2371, 2008.
  • [22] R. S. Romaniuk, „Capillary optical fiber”, Bulletin of the Polish Academy of Sciences, vol. 56, no. 2, pp. 87 - 102, 2008.
  • [23] S. Chatrchyan et al., „The CMS experiment at the CERN LHC”, Journal of Instrumentation, vol. 3, no. 8, p. S08004, 2008.
  • [24] J. Dorosz et al., „Development of optical fiber technology in Poland”, in Proc. SPIE 8010, 2011, pp. 8010 - 02.
  • [25] R. S. Romaniuk, „Ultrabroadband photonic Internet”, in Proc. SPIE 8010, 2011, pp. 8010 - 03.
  • [26] R. S. Romaniuk, „Modulation and multiplexing in ultra-broadband photonic Internet, part I”, in Proc. SPIE 8010, 2011, pp. 8010 - 04.
  • [27] R. S. Romaniuk, „Modulation and multiplexing in ultra-broadband photonic Internet, part II”, in Proc. SPIE 8010, 2011, pp. 8010 - 05.
  • [28] B. Niton et al., „Documentation generator for VHDL and MatLab source codes for photonic and electronic systems”, in Proc. SPIE 8010, 2011, p. 80100R.
  • [29] B. Niton et al., „Documentation generator application for VHDL source codes”, in Proc. SPIE 8010, 2011, p. 80100S.
  • [30] B. Niton et al., „Documentation generator application for MatLab source codes”, in Proc. SPIE 8010, 2011, p. 80100T.
  • [31] R. S. Romaniuk, „Photonics Letters of Poland - a new peer reviewed Internet publication of the Photonics Society of Poland,” Photonics Letters of Poland, vol. 1, no. 1, pp. 1 - 3, 2009.
  • [32] R. S. Romaniuk, „WILGA Symposium on Photonics Applications”, Photonics Letters of Poland, vol. 1, no. 2, pp. 46 - 48, 2009.
  • [33] G. Kasprowicz et al., „CCD detectors for wide field optical astronomy”, Photonics Letters of Poland, vol. 1, no. 2, pp. 82 - 84, 2009.
  • [34] R. S. Romaniuk, „POLFEL - Free Electron Laser in Poland”, Photonics Letters of Poland, vol. 1, no. 3, pp. 103 - 105, 2009.
  • [35] R. S. Romaniuk, „Modal structure design in refractive capillary optical fibers”, Photonics Letters of Poland, vol. 2, no. 1, pp. 22 - 24, 2010.
  • [36] R. S. Romaniuk, „WILGA Photonics and Web Engineering 2010”, Photonics Letters of Poland, vol. 2, no. 2, pp. 55 - 57, 2010.
  • [37] R. S. Romaniuk, „Geometry design in refractive capillary optical fibers”, Photonics Letters of Poland, vol. 2, no. 2, pp. 64 - 66, 2010.
  • [38] P. Obroślak et al., „Digital techniques for noise reduction in CCD cameras”, Photonics Letters of Poland, vol. 2, no. 3, pp. 134 - 136, 2010.
  • [39] R. S. Romaniuk, „Petabit photonic Internet”, Photonics Letters of Poland, vol. 3, no. 2, pp. 91 - 93, 2011.
  • [40] S. Chatrchyan et al., „Commissioning of the CMS experiment and the cosmic run at four tesla”, Journal of Instrumentation, vol. 5, no. 3, p. T03001, 2010.
  • [41] S. Chatrchyan et al., „Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams”, Journal of Instrumentation, vol. 5, no. 3, p. T03002, 2010.
  • [42] S. Chatrchyan et al., „Performance of the CMS drift-tube chamber local trigger with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03003, 2010.
  • [43] S. Chatrchyan et al., „Fine synchronization of the CMS muon drift-tube local trigger using cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03004, 2010.
  • [44] S. Chatrchyan et al., „Commissioning of the CMS High-Level Trigger with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03005, 2010.
  • [45] S. Chatrchyan et al., „CMS data processing workflows during an extended cosmic ray run”, Journal of Instrumentation, vol. 5, no. 3, p. T03006, 2010.
  • [46] S. Chatrchyan et al., „Commissioning and performance of the CMS pixel tracker with cosmic ray muons”, Journal of Instrumentation, vol. 5, no. 3, p. T03007, 2010.
  • [47] S. Chatrchyan et al., „Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons”, Journal of Instrumentation, vol. 5, no. 3, p. T03008, 2010.
  • [48] S. Chatrchyan et al., „Alignment of the CMS silicon tracker during commissioning with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03009, 2010.
  • [49] S. Chatrchyan et al., „Performance and operation of the CMS electromagnetic calorimeter”, Journal of Instrumentation, vol. 5, no. 3, p. T03010, 2010.
  • [50] S. Chatrchyan et al., „Measurement of the muon stopping power in lead tungstate”, Journal of Instrumentation, vol. 5, no. 3, p. P03007, 2010.
  • [51] S. Chatrchyan et al., „Time reconstruction and performance of the CMS electromagnetic calorimeter”, Journal of Instrumentation, vol. 5, no. 3, p. T03011, 2010.
  • [52] S. Chatrchyan et al., „Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data CMS Collaboration”, Journal of Instrumentation, vol. 5, no. 3, p. T03012, 2010.
  • [53] S. Chatrchyan et al., „Performance of CMS hadron calorimeter timing and synchronization using test beam, cosmic ray, and LHC beam data”, Journal of Instrumentation, vol. 5, no. 3, p. T03013, 2010.
  • [54] S. Chatrchyan et al., „Identification and filtering of uncharacteristic noise in the CMS hadron calorimeter”, Journal of Instrumentation, vol. 5, no. 3, p. T03014, 2010.
  • [55] S. Chatrchyan et al., „Performance of the CMS drift tube chambers with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03015, 2010.
  • [56] S. Chatrchyan et al., „Calibration of the CMS drift tube chambers and measurement of the drift velocity with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03016, 2010.
  • [57] S. Chatrchyan et al., „Performance study of the CMS barrel resistive plate chambers with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03017, 2010.
  • [58] S. Chatrchyan et al., „Performance of the CMS cathode strip chambers with cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03018, 2010.
  • [59] S. Chatrchyan et al., „Aligning the CMS muon chambers with the muon alignment system during an extended cosmic ray run”, Journal of Instrumentation, vol. 5, no. 3, p. T03019, 2010.
  • [60] S. Chatrchyan et al., „Alignment of the CMS muon system with cosmic-ray and beamhalo muons”, Journal of Instrumentation, vol. 5, no. 3, p. T03020, 2010.
  • [61] S. Chatrchyan et al., „Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays”, Journal of Instrumentation, vol. 5, no. 3, p. T03021, 2010.
  • [62] S. Chatrchyan et al., „Performance of CMS muon reconstruction in cosmic-ray events”, Journal of Instrumentation, vol. 5, no. 3, p. T03022, 2010.
  • [63] A. Burd et al., „Pi of the sky - robotic search for cosmic flashes”, in Proc. SPIE 6159, 2006, pp. 154 - 159.
  • [64] W. L. Wolinski et al., „Introduction - Laser technology”, in Proc. SPIE 6598, 2007, pp. ix - xi.
  • [65] R. S. Romaniuk, „Introduction - Photonics Applications”, in Proc. SPIE 6937, 2008, pp. xxix - xli.
  • [66] G. Kasprowicz et al., „Hardware emulator of the high resolution CCD sensor for the pi-of-the-sky experiment”, in Proc. SPIE 6937, 2007, p. 693708.
  • [67] M. Kwiatkowski et al., „Nios II implementation in CCD camera for Pi of the Sky experiment”, in Proc. SPIE 6937, 2007, p. 693709.
  • [68] A. Brandt et al., „Measurement and control of field in RF GUN at FLASH”, in Proc. SPIE 6937, 2007, p. 69370F.
  • [69] T. Czarski et al., „Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator”, in Proc. SPIE 6937, 2007, p. 69370H.
  • [70] P. Strzałkowski et al., „Versatile LLRF platform for FLASH laser”, in Proc. SPIE 6937, 2007, p. 69370I.
  • [71] K. Lewandowski et al., „FPGA based PCI mezzanine card with digital interfaces”, in Proc. SPIE 6937, 2007, p. 69370J.
  • [72] L. Dymanowski et al., „Data acquisition module implemented on PCI mezzanine card”, in Proc. SPIE 6937, 2007, p. 69370K.
  • [73] R. Graczyk et al., „FPGA systems development based on universal controller module”, in Proc. SPIE 6937, 2007, p. 69370M.
  • [74] K. Bujnowski et al., „MatLab script to C code converter for embedded processors of FLASH LLRF control system”, in Proc. SPIE 6937, 2007, p. 69370O.
  • [75] K. Bujnowski et al., „Decomposition of MATLAB script for FPGA implementation of real time simulation algorithms for LLRF system in European XFEL”, in Proc. SPIE 6937, 2007, p. 69370P.
  • [76] R. S. Romaniuk, „Nonlinear glasses and metaglasses for photonics, a review, part I”, in Proc. SPIE 6937, 2007, p. 693716.
  • [77] R. S. Romaniuk, „Nonlinear glasses and metaglasses for photonics, a review, part II”, in Proc. SPIE 6937, 2007, p. 693717.
  • [78] J. Dorosz et al., „Introduction - Optical Fiber Applications”, in Proc. SPIE 7120, 2008, pp. xiii - xv.
  • [79] M. Kwiatkowski et al., „Advanced camera image data acquisition system for 'Pi-of-the-Sky'', in Proc. SPIE 7124, 2008, p. 7124OF.
  • [80] A. Kalicki et al., „Ultra-broadband photonic Internet: safety aspects”, in Proc. SPIE 7124, 2008, p. 71241O.
  • [81] R. S. Romaniuk, „Introduction - Photonics Applications”, in Proc. SPIE 7502, 2009, pp. 7502 - 01, xxiii - xxiv.
  • [82] R. S. Romaniuk, „Development of free electron laser and accelerator technology in Poland”, in Proc. SPIE 7502, 2009, pp. 7502 - 70.
  • [83] R. S. Romaniuk, „Institute of Electronic Systems in CARE and EuCARD projects, Accelerator and FEL research, development and applications in Europe”, in Proc. SPIE 7502, 2009, pp. 7502 - 71.
  • [84] R. S. Romaniuk, „Introduction - Photonics Applications”, in Proc. SPIE 7745, 2010, pp. 774 501, xiii-xviii.
  • [85] R. S. Romaniuk, „Photonics Applications and Web Engineering SPIE-PSP WILGA Symposium series”, in Proc. SPIE 7745, 2010, p. 774502.
  • [86] R. S. Romaniuk, „WILGA Photonics and Web Engineering 2010”, in Proc. SPIE 7745, 2010, p. 774503.
  • [87] J. Modelski et al., „Electronics and telecommunications in Poland, issues and perspectives, part 1”, in Proc. SPIE 7745, 2010, p. 774504.
  • [88] J. Modelski et al., „Electronics and telecommunications in Poland, issues and perspectives, part 2”, in Proc. SPIE 7745, 2010, p. 774505.
  • [89] J. Modelski et al., „Electronics and telecommunications in Poland, issues and perspectives, part 3”, in Proc. SPIE 7745, 2010, p. 774506.
  • [90] J. Gajda et al., „Development of laser technology in Poland”, in Proc. SPIE 7745, 2010, p. 774507.
  • [91] W. Wójcik et al., „Optical fiber technology development in Poland”, in Proc. SPIE 7745, 2010, p. 774508.
  • [92] R. S. Romaniuk, „EuCARD 2010: European coordination of accelerator research and development”, in Proc. SPIE 7745, 2010, p. 774509.
  • [93] T. Janicki et al., „Integration of multi-interface conversion channel using FPGA for modular photonic network”, in Proc. SPIE 7745, 2010, p. 77451H.
  • [94] A. Zagozdzinska et al., „Parametrized diagnostic module implementation in FPGA structures”, in Proc. SPIE 7745, 2010, p. 77451I.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0026-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.