PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computationally-Efficient Design of a Dynamic System-Level LTE Simulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Long-Term Evolution (LTE) is the next generation of current mobile telecommunication networks. LTE has a new flat radio-network architecture and a significant increase in spectrum efficiency. In this paper, a computationally-efficient tool for dynamic system-level LTE simulations is proposed. A physical layer abstraction is performed to predict link-layer performance with a low computational cost. At link layer, there are two important functions designed to increase the network capacity: Link Adaptation and Dynamic Scheduling. Other Radio Resource Management functionalities such as Admission Control and Mobility Management are performed at network layer. The simulator is conceived for large simulated network time to allow evaluation of optimization algorithms for the main network-level functionalities.
Słowa kluczowe
Rocznik
Strony
347--358
Opis fizyczny
Bibliogr. 31 poz., il., tab., wykr.,
Twórcy
autor
autor
autor
autor
autor
autor
  • Communications Engineering Dept., University of Málaga, Campus de Teatinos. 29071, Málaga, Spain, pabloml@ic.uma.es
Bibliografia
  • [1] 3GPP TS 36.201, „Evolved Universal Terrestrial Radio Access (EUTRA); LTE physical layer; General description”.
  • [2] 3GPP TS 36.300, „Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN); Overall description”.
  • [3] H. Holma and A. Toskala, LTE for UMTS - OFDMA and SC-FDMA Based Radio Access. Wiley, 2009.
  • [4] 3GPP TS36.133, „Evolved Universal Terrestrial Radio Access (EUTRA); Requirements for Support of Radio Resource Management”.
  • [5] J. Wu, Z. Yin, J. Zhang, and W. Heng, „Physical Layer Abstraction Algorithms Research for 802.11n and LTE Downlink”, International Symposium on Signals Systems and Electronics (ISSSE), 2010.
  • [6] J. Olmos, A. Serra, S. Ruiz, M. Garca-Lozano, and D. Gonzalez, „Link Level Simulator for LTE Downlink”, COST2100, 2009, TD(09)779.
  • [7] J. C. Ikuno, M.Wrulich, and M. Rupp, „System Level Simulation of LTE Networks”, IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), 2010.
  • [8] C. Mehlführer, M. Wrulich, J. C. Ikuno, D. Bosanska, and M. Rupp, „Simulating the Long Term Evolution Physical Layer”, 17th European Signal Processing Conference (EUSIPCO 2009), 2009.
  • [9] T. Hytönen, Optimal Wrap-around Network Simulation. Helsinki University of Technology Institute of Mathematics: Research Reports, 2001.
  • [10] B. Ahn, H. Yoon, and J. W. Cho, „A Design of Macro-micro CDMA Cellular Overlays in the Existing Big Urban Areas”, IEEE Proceedings of Vehicular Technology Conference (VTC 2001), pp. 2094 - 2104, 2001.
  • [11] I. Khider, A. Saad, and W. Furong, „Study on Indoor and Outdoor Environment for Mobile Ad Hoc Network Supported with Base Stations”, Wireless Communications, Networking and Mobile Computing (WiCom), 2007.
  • [12] ETSI TR 101 112 v.3.2.0, Selection procedures for the choice of radio transmission technologies of the UMTS (UMTS 30.03 version 3.1.0), ETSI April 1998.
  • [13] A. Lobinger, S. Stefanski, and T. Jansen, „Load Balancing in Downlink LTE Self-Optimizing Networks”, IEEE 71st Vehicular Technology Conference, (VTC 2010-Spring), 2010.
  • [14] A. Mahajan et al, „Urban Mobility Models for VANETs”, 2nd Workshop on Next Generation Wireless Networks, 2006.
  • [15] T. Camp, J. Boleng, and V. Davies, „A Survey of Mobility Model for Ad Hoc Network Research”, Wireless Communication and Mobile Computing (WCMC): Special Issue on Mobile AdHoc Networking: Research, Trends and Applications, vol. 2, no. 5, pp. 483 - 502, 2002.
  • [16] NGMN, „NGMN Radio Access Performance Evaluation Methodology”, Version 1.0, Enero 2008, www.ngmn.org.
  • [17] J. D. Parsons, The Mobile Radio Propagation Channel. Pentech, 1992.
  • [18] 3GPP, „Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (Release 9)”, 3GPP TS 36.101, Dec. 2009.
  • [19] W. C. Jakes, Microwave Mobile Communications. Wiley, 1974.
  • [20] E. Bonek, „Tunnels, Corridors, and Other Special Environments”, in COST Action 231: Digital Mobile Radio Towards Future Generation Systems, C. E. Damosso, Ed. Brüssel: European Union Publications, 1999, pp. 190 - 207.
  • [21] F. Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and Performance. New York, NY, USA: Cambridge University Press, 2009.
  • [22] D. Huo, „Simulating Slow Fading by Means of One Dimensional Stochastical Process”, IEEE 46th Vehicular Technology Conference, 1996. ’Mobile Technology for the Human Race’, vol. 2, pp. 620 - 622, April-May 1996.
  • [23] M. Gudmundson, „Correlation Model for Shadow Fading in Mobile Radio Systems”, Electronics Letters, vol. 27, no. 23, pp. 2145 - 2146, November 1991.
  • [24] 3GPP, „Feasibility study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement”, 3GPP TR 25.892, 2004.
  • [25] 3GPP, „System Analysis of the Impact of CQI Reporting Period in DL SIMO OFDMA (R1-061506)”, Shanghai, China, 3GPP TSG-RAN WG1 45, May 2006.
  • [26] E. Tuomaala, „Effective SINR Approach of Link to System Mapping in OFDM/Multi-Carrier Mobile Network”, IEEE Mobility Conference, The Second International Conference on Mobile Technology Applications and Systems, 2005.
  • [27] J. C. Ikuno, M. Wrulich, and M. Rupp, „Performance and Modeling of LTE H-ARQ”, International ITG Workshop on Smart Antennas WSA, 2009.
  • [28] 3GPP, „OFDM-HSDPA System level simulator calibration (R1-040500)”, Montreal, Canada, 3GPP TSG-RAN WG1 37, May 2004.
  • [29] 3GPP, „E-UTRA; UE conformance specification; Radio transmission and reception; Part 1: Conformance testing”, 3GPP TS 36.521, 2009.
  • [30] J. T. Entrambasaguas, M. C. Aguayo-Torres, G. Gomez, and J. F. Paris, „Multiuser Capacity and Fairness Evaluation of Channel/QoS-Aware Multiplexing Algorithms”, IEEE Network, vol. 21, no. 3, May – June 2007.
  • [31] D. Hong and S. S. Rappaport, „Traffic Model and Performance Analysis for Cellular Mobile Radio Telephone Systems with Prioritized and Nonprioritized Handoff Procedures”, IEEE Transactions on Vehicular Technology, vol. 35, no. 3, pp. 77 - 92, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0026-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.