PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deployment of an Agent-based SANET Architecture for Healthcare Services

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the adaptation of a computational technique utilizing Extended Kohonen Maps (EKMs) and Rao-Blackwell-Kolmogorov (R-B) Filtering mechanisms for the administration of Sensor-Actuator networks (SANETs). Inspired by the BDI (Belief-Desire-Intention) Agent model from Rao and Georgeff, EKMs perform the quantitative analysis of an algorithmic artificial neural network process by using an indirect-mapping EKM to self-organize, while the Rao-Blackwell filtering mechanism reduces the external noise and interference in the problem set introduced through the self-organization process. Initial results demonstrate that a combinatorial approach to optimization with EKMs and Rao-Blackwell filtering provides an improvement in event trajectory approximation in comparison to standalone cooperative EKM processes to allow responsive event detection and optimization in patient healthcare.
Twórcy
autor
  • Faculty of Engineering, University of Technology, Sydney, Australia
autor
  • Faculty of Engineering, University of Technology, Sydney, Australia
Bibliografia
  • [1] Health Level Seven (HL7) Inc, http://www.hl7.org/, Last Visited 22ndJanuary 2010.
  • [2] C. C. Chiu, Z. Chaczko, and P. Moses, „Advanced Extended Kohonen Mapping Modelling Techniques for Sensor Actor Networks”, in 4th International Conference on Broadband Communication, Information Technology & Biomedical Applications (BroadBandCom 2009), Wroclaw, Poland, July 2009, pp. 15 - 18.
  • [3] C. C. Chiu, Z. Chaczko, and P. Moses, „Sensor Actor Network Modeling Utilizing the Holonic Architectural Framework”, International Journal of Electronics and Telecommunications,vol. 55, no. 4, 2009.
  • [4] K. H. Low, W. K. Leow, and M. H. Ang Jr., An Ensemble of Cooperative Extended Kohonen Maps for Complex Tasks In Neural Computation. MIT Press, 2005, vol. 17.
  • [5] J. del R. Mill'an, D. Posenato, and E. Dedieu, „Continuous-Action Qlearning”, Machine Learning, pp. 249 - 265, 2002.
  • [6] A. J. C. Sharkey and N. E. Sharkey, „Combining Diverse Neural Nets”, Knowledge Engineering Review, pp. 231 - 247, 1997.
  • [7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, „Reinforcement Learning: A Survey”. Journal of Artificial Intelligence Research, vol. 4, pp. 237 - 285, 1996.
  • [8] T. Kohonen, Self-Organizing Maps, 3rd ed. New York: Springer-Verlag, 2000.
  • [9] H. B. Lawson and M. L. Michelsohn, Spin Geometry. Princeton, NJ: Princeton University Press, 1989.
  • [10] Z. Chaczko and C. Chiu, „Cooperative EKMs for Wireless Sensor Networks”, Eurocast, vol. 12, pp. 304 - 305, 2009, published by Gran Canarias Las Palmas University Press.
  • [11] Z. Chaczko, D. Davis, and V. Mahadevan, „New Perspectives on Teaching and Learning Software Systems Development in Large Groups”, in Proceedings of the FIfth International Conference on Information Technology Based Higher Education and Training, Istanbul, Turkey, 2004.
  • [12] C. Szyperski, „Emerging Component Software Technologies - A Strategic Comparison”, Software - Concepts and Tools, vol. 19, no. 1, pp. 2 - 10, 1998.
  • [13] Z. Chaczko, J. Nikodem, R. Klempous, and M. Nikodem, „Sensors Localisation Methods in the COSA Framework”, in AusWireless '07: The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications, 2007, p. 60.
  • [14] Z. Chaczko, V. Mahadevan, and J. Nikodem, „A Bio-Inspired Telecollaboration Service Taxonomy: Usability Related Concerns”, in Third International Conference on Broadband Communications, Information Technology & Biomedical Applications, 2008, pp. 209 - 214.
  • [15] Z. Chaczko et al, „NICE Models of Biomimetic Software Systems”, in CSIRO ICT Centre Conference, 2007.
  • [16] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, Perez-Uribe, and A. Stauffer, „A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems”, IEEE Transactionson Evolutionary Computation, vol. 1, pp. 83 - 97, 1997.
  • [17] M. Clerc, Particle Swarm Optimization: ISTE (International Scientific and Technical Encyclopedia). Hermés Science, 2005, translated from L'optimisation par essaims particulaires. Versions paramétriques et adaptatives.
  • [18] P. Lounesto, Clifford Algebras and Spinors. Cambridge: Cambridge University Press, 2001.
  • [19] J. Ghosh and A. Nag, „An Overview of Radial Basis Function Networks”, in Radial Basis Function Networks: New Advances in Design, R. J. Howlett and L. C. Jain, Eds. New York: Physica-Verlag, 2001, pp. 1 - 36.
  • [20] K. H. Low, W. K. Leow, and M. H. Ang Jr., „Task Allocation via Self-Organizing Swarm Coalitions in Distributed Mobile Sensor Network”, in Proceedings of 19th National Conference on AI (AAAI-04), 2004, pp. 28 - 33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0026-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.