PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektryczne profile w epitaksjalnym GaAs:Si z dużą koncentracją defektów o niejednorodnych rozkładach przestrzennych indukowanych przerwą wzrostu

Identyfikatory
Warianty tytułu
EN
Electrical depth profiles of MBE-grown GaAs:Si with high defect concentrations at interrputed growth interface
Języki publikacji
PL
Abstrakty
PL
Przedmiotem badań w niniejszej pracy były głębokie pułapki w strukturach z GaAs:Si, które stanowiły odniesienie dla struktur z kropkami kwantowymi (quantum dots, QDs) z InAs/GaAs. Struktury te wykonano podobnie jak struktury z QDs, tj. epitaksją z wiązek molekularnych (molecular beam epitaxy, MBE) stosując technikę przerwy wzrostu w nadmiarze arsenu, jedynie wykluczając depozycję In. Pułapki charakteryzowano spektroskopią głębokich poziomów (deep level transient spectroscopy, DLTS), techniką pomiarów pojemności w funkcji napięcia polaryzacji, C-V, oraz wykorzystując obie te techniki w modzie profilowań wgłębnych. Profilowanie C-V włącza opis teoretyczny, który uwzględnia wyniki DLTS, tj. wysoką koncentrację defektów R4 i R5 i ich niejednorodny rozkładach przestrzenny. Umożliwił on interpretację tych zarówno już znanych, jak i nowych anomalii zaobserwowanych w takiej sytuacji w eksperymentalnych rozkładach koncentracji nośników. Zaproponowany model teoretyczny wraz z wynikami pomiarów w szerokim zakresie temperatury i ich prezentacją w postaci konturowych wykresów koncentracji nośników, Ncv, na płaszczyźnie we współrzędnych napięcia, VR i temperatury, T, (VR, T) stanowi alternatywne podejście w zakresie charakteryzacji defektów. Prezentowana metodologia profilowania C-V ma charakter ogólnego zastosowania i może być wykorzystana w diagnostyce zdefektowanych materiałów i struktur.
EN
Deep level transient spectroscopy, DLTS, and capacitance versus voltage measurements, C-V, as well as both techniques in their profiling modes, were used to study electron traps in MBE-grown GaAs structures. The structures were reference samples for devices containing InAs/GaAs quantum dots and were prepared by an identical technique, except for the introduction of the quantum dots. C-V profiling includes theoretical description and interpretation of new anomalies in the carriers concentration profiles found in the presence of the defects with high concentrations and inhomogeneous distributions. The theoretical model together with experimental results of free-carrier concentrations in a wide temperature range and their presentation in a contour representation on a (VR T)- plane is a novel approach for defect characterization. The methodology can be used for diagnostics and characterization of defected semiconductor materials and structures.
Rocznik
Strony
163--171
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
autor
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • [1] Bimberg D., Grundmanna M., Heinrichsdorff F., Ledentsov N. N., Ustinov V. M., Zhukov A. E., Kovsh A. R., Maxirnov M. V., Shernyakov Y. M., Volovik B. V., Tsatsul'nikov A. R., Kop'ev P. S., Alferov Zh. I.: Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films, 367, 2000, pp. 235-249.
  • [2] Chen J. X., Markus A., Fiore A., Oesterle U., Stanley R. P., Carlin J. F., Houdre R., Ilegems M., Lazzarini L., Nasi L., Todaro M. T., Piscopiello E., Cingoiani R., Catalano M., Tkacki J., Ratajczak J.: Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications. J. Appl. Phys. 91, 2002, pp. 6710-6716.
  • [3] Rudno-Rudziński W., Sęk G., Misiewicz J., Lamas T. E., Quizy A. A.: The formation of self-assembled InAs/GaAs quantum dots emitting at 1.3 μm followed by photoreflectance spectroscopy. J. App. Phys. 101, 2007, pp. 073518-073521.
  • [4] Jihoon Lee, Wang Z. M., Dorogan V. G., Mazur Y. I., Salamo G. J.: Evolution of various nanostructures and preservation of self-assembled InAs quantum dots during GaAs capping. IEEE Transactions on Nanotechnology, 9, 2010, pp. 149-156.
  • [5] Izuka K., Mori K., Suzuki T.: Effects of growth interruption during the formation of InAs/GaAs self-assembled quantum dots grown by molecular beam epitaxy. Microelectronics J., 34, 2003, pp. 611-613.
  • [6] Morishita Y., Osada K., Hasegawa T.: Effects of growth interruption during growth of InAs wetting layer on formation of InAs quantum dots. Jap. J. Appl. Phys., 44, 2005, pp. 2925-2928.
  • [7] Balzarotti A.: The evolution of self-assembled InAs/GaAs(001) quantum dots grown by growth-interrupted molecular beam epitaxy. Nanotechnology, 19, 2008, pp. 505701-505706.
  • [8] Kaczmarczyk M., Piotrowski T., Kaniewska M., Engstrom O., Piscator J., Sadeghi M., Pawłowski S.: Analiza wymiarów samoorganizowanych kropek kwantowych z InAs/GaAs wykonanych techniką MBE. Elektronika, 2, 2008, pp. 39-42.
  • [9] Kaniewska M., Engström O., Kaczmarczyk M.; Classification of energy levels in quantum dot structures by means of depleted layer spectroscopy. J. Electron. Mater.. 39, 2010. pp. 766-772.
  • [10] Lang D. V.: Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys., 45, 1974, pp. 3023-3031.
  • [11] Hilibrand J., Gold R. D.: Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements. RCA Review, 21, 1960, pp. 245-252.
  • [12] Kimerling L. C.: Influence of deep traps on the measurement of free-carrier distributions in semiconductors by junction capacitance techniques. J. Appl. Phys., 45, 1974, pp. 1839-1845.
  • [13] Lang D. V., Henry C. H.: Nonradiative recombination at deep levels in GaAs and GaP by lattice-relaxation multiphonon emission. Phys. Rev. Lett., 35, 1975, pp. 1525-1528.
  • [14] Lang D. V., Cho A. Y., Gossard A. C., Ilegemes M., Wiegmann W.: Study of electron traps in n-GaAs grown by molecular beam epitaxy. J. Appl. Phys., 47, 1976, pp. 2558-2564.
  • [15] Martin G. M., Mitonneau A., Mircea A.: Electron traps in bulk and epitaxial GaAs crystals. Electronic Letters, 13, 1977, pp. 191-193.
  • [16] Pao Yu-Ching, Liu D., Lee W. S., Harris J. S.: Effect of hydrogen on undoped and lightly Si-doped molecular beam epitaxial GaAs layers. Appl. Phys. Lett., 48, 1986, pp. 1291-1293.
  • [17] Chand N., SerpentA. M., Van derZiel J. P., Lang D. V.: Reduction and origin of electron and hole traps in GaAs grown by molecular-beam epitaxy. J. Vac. Sci. Technol. B, 7, 1989, pp. 399-104.
  • [18] Lin S. W., Balocco C., Missous M., Peaker A. R., Song A. M.: Co-existence of deep levels with optically active InAs quantum dots. Phys. Rev. B, 72, 2005, pp. 165302-165309.
  • [19] McAfee S. R., Lang D. V., Tsang T.: Observation of deep levels associated with the GaAs/AlxGa1-xAs interface grown by molecular beam epitaxy. Appl. Phys. Lett. 40, 1982, pp. 520-522.
  • [20] Pons D.: Accurate determination of the free carrier capture kinetics of deep traps by space-charge methods. J. Appl. Phys., 55, 1984, pp. 3644-3657.
  • [21] Johnson W. C.: The influence of Debye length on the C-V measurement of doping profiles. Transition on Electron Devices, ED-18, 1971, pp. 965-973.
  • [22] Sercel P. C.: Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures. Phys. Rev. B, 51. 1995, pp. 14532-14541.
  • [23] Kaniewska M., Engström O., Barcz A., Pacholak-Cybulska M.: Electrical activity of deep levels in the presence of InAs/GaAs quantum dots. Materials Science in Semiconductor Processing, 9, 2006, pp. 36-40.
  • [24] Sreenivasan D., Haverkort J. E. M., Eijkemans T. J., Nötzel R.: Photoluminescence from low temperature grown InAs/GaAs quantum dots. Appl. Phys. Lett., 90, 2007, pp. 112109-112111.
  • [25] Balocco C., Song A. M., Missous M.: Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures. Appl. Phys. Lett., 85, 2004, pp. 5911-5913.
  • [26] Kaniewska M., Engström O., Barcz A., Pacholak-Cybulska M.: Deep levels induced by InAs/GaAs quantum dots. Materials Science and Engineering C, 26, 2006, pp 871-875.
  • [27] Miller G. L., Lang D. V., Kimerling L. C.: Capacitance transient spectroscopy. Ann. Rev. Mater. Sci., 1977, pp. 377-448.
  • [28] Engström O., Kaniewska M., Kaczmarczyk M.: Confined energy states in quantum dots detected by a resonant differential capacitance method. Appl. Phys. Lett., 95, 2009, pp. 013104-013106.
  • [29] Piscator J., Raeissi B., Engström O.: Multiparameter admittance spectroscopy for metal-oxide-semiconductor system. J. Appl. Phys., 106, 2009, pp. 054510-054520.
  • [30] Bratherton S. D.: Measurement of deep-level spatial distributions. Solid-State Electronics, 19, 1976, pp. 341-342.
  • [31] Li M. F., Sah C. T.: A new method for determination of dopant and trap concentration profiles in semiconductor. IEEE Trans. Electron Devices, ED-29, 1982, pp. 306-315.
  • [32] Engström O., Alm A.: Thermodynamical analysis of optimal recombination centers in thyristors. Solid-State Electronics 21, 1978, pp. 1571-1576.
  • [33] Brounkov P. N., Chaldyshev V. V., Suvorova A. A., Bert N. A., Konnikov S. G., Chernigovskii A. V., Preobrazhenskii V. V., Putyato M. A., Semyagin B. R.: Bistability of charge accumulated in Iow-temperature-grown GaAs. Appl. Phys. Lett. 73, 1998, pp. 2796-2798.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0024-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.