Tytuł artykułu
Identyfikatory
Warianty tytułu
Microfluidic immunosensors with amperometric detection
Języki publikacji
Abstrakty
Artykuł obejmuje przekrój zagadnień związanych z mikroprzepływowymi amperometrycznymi immunoczujnikami. Wymienione zostały przykładowe technologie i materiały konstrukcyjne używane do budowy mikroprzepływowych modułów i elektrod oraz immunoenzymatyczne metody analityczne stosowane w immunoczujnikach, takie jak ELISA i ELISPOT. Zostały również przedstawione zagadnienia związane z przepływem w systemach mikroprzepływowych. Opisano technologię matryc z SU-8, struktur mikroprzepływowych wykonanych z PDMS-u oraz laminowanych elektrod Au/Ti na podłożu polimerowym. Uzyskano szczelne mikroprzepływowe układy ze złotymi elektrodami na podłożu z PDMS. Dzięki zastosowaniu trawienia jonowego podłoża przed napyleniem warstw metali oraz zastosowaniu pośredniej warstwy tytanowej, elektrody wykazują dobrą adhezję do podłoża. Dodatkowo została zastosowana warstwa PDMS-u, chroniąca ścieżki metalizacji przed pękaniem, w której plazmowo wytworzono okienka kontaktów elektrycznych i elektrod aktywnych elektrochemicznie. Elektrody charakteryzowały się małą rezystancją elektryczną, choć nie uzyskano zadawalającej powtarzalności ich wykonania. Struktury mikroprzepływowe wraz z elektrodami mogą być zastosowane w amperometrycznym immunoczujniku do pomiaru różnych antygenów, w zależności od użytych immunoreagentów m.in. do pomiaru stężenia fibrynogenu we krwi, w celu określenia ryzyka wystąpienia udaru niedokrwiennego mózgu oraz chorób układu krążenia.
This paper describes some problems related with microfluidic amperometric immunosensors. It contains brief review of technology and constructive materials for microfluidic systems and electrodes. In addition, immunoenzymatic analytical methods like: ELISA and ELISPOT as well as some flow phenomena in microfluidic environment are presented. Polymeric SU-8 masters, PDMS-based microfluidic structures and laminated Au/Ti electrodes on polymeric substrates were fabricated. The microfluidic structures were successfully bonded after oxygen plasma surface activation. Thanks to applying reactive ion etching prior Au sputtering and Ti adhesive layer deposition, the Au/Ti electrodes exhibited a very good adhesion. After patterning, the electrodes were protected by a thin PDMS layer. Openings for electrodes and electrical contact pads were etched by (SF₆ + O₂) plasma. The electrodes had a good electrical conductivity but rather poor reproducibility. The microfluidic structures can be applied in amperometric immunosensor to measure concentration of different antigens e.g. concentration of fibrinogen in blood for evaluation of brain stroke and cardiovascular diseases risk.
Wydawca
Rocznik
Tom
Strony
100--106
Opis fizyczny
Bibliogr. 67 poz., il., rys.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
- Instytut Technologii Elektronowej, Warszawa
Bibliografia
- [1] Torbicz W., Pijanowska D. G., Dawgul M.: Mikrosystemy w pomiarach biochemicznych. Elektronika 2008, 6, ss. 27 - 34.
- [2] Vig A., Radoi A., Munoz-Berbel X., Gyemantc G., Marty J. L.: Impedimetric aflatoxin M1 immunosensor based on colloidal gold and silver electrodeposition. Sensors and Actuators B 2009, 138, pp. 214 - 220.
- [3] Wu J., Fu Z., Yan F., Ju H.: Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends in Analytical Chemistry 2007, 26, pp. 679 - 688.
- [4] Li X. Y., Cai Y., Zhang L., Zhuo Y., Zhang Y.: Amperometric immunosensor based on toluidibe blue/nano-Au through electrostatic interaction for determination of carcinoembryonic antigen. Journal of Biotechnology 2006, 123, pp. 356 - 366.
- [5] Wu L., Chai J., Du D., Ju H.: Electrochemical immunoassay for CA125 based on cellulose acetate stabilized antigen/colloidal gold nanoparticles membrane. Electrochemica Acta 2006, 51, pp. 1208 - 1214.
- [6] Lin J., He C., Zhang L., Zhang S.: Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Analytical Biochemistry 2009, 384, pp. 130 - 135.
- [7] Wang S., Zhang X., Mao X., Zeng Q., Xu H., Lin Y., Chen W., Liu G.: Electrochemical immunoassay of carcinoembryonic antigen based on a lead sulfide nanoparticle label. Nanotechnology 2008, 19, pp. 1 - 6.
- [8] Kurtinaitiene B., Ambrozaite D., Laurinavicius V., Ramanaviciene A., Ramanavicius A.: Amperometric immunosensor for diagnosis of BLV infection, Biosensors and Bioelectronics 2008, 23, pp. 1547 - 1554.
- [9] Hennessy H., Afara N., Omanovic S., Padjen A. L.: Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Analytica Chimica Acta 2009, 643, pp. 45 - 53.
- [10] Kazimierczak B., Pijanowska D. G., Torbicz W.: Application of enzyme labeled antibodies for immunosensors based on electrochemical detection. Polish Journal of Chemistry 2008, 82, pp. 1255 - 1264.
- [11] Kazimierczak B., Pijanowska D. G.: Amperometryczne oznaczanie przeciwciał anty-CRP znakowanych fosfatazą alkaliczną. Elektronika 2008, 6, ss. 47 - 49.
- [12] Messina G. A., Panini N. V., Martinez N. A., Raba J.: Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples. Analytical Biochemistry 2008, 380, pp. 262 - 267.
- [13] Munge B. S., Krause C. E., Malhotra R., Patel V. J., Gutkind S., and Rusling J. F.: Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochemistry Communications 2009, 11, pp. 1009 - 1012.
- [14] Domnanich P., Sauer U., Pultar J., Preininger C.: Protein microarray for the analysis of human melanoma biomarkers. Sensors and Actuators B 2009, 139, pp. 2 - 8.
- [15] Tang D., Yuan R., Chai Y., Zhong X., Liu Y., Dai J.: Electrochemical detection of hepatitis B surface antigen using colloidal gold nanoparticles modified by a sol-gel network interface. Clinical Biochemistry 2006, 39, pp. 309 - 314.
- [16] Marcon L., Stievenard D., Melnyk O.: Electical detection of human immunoglobulins G from human serum using a microbiosensor. Biosensors and Bioelectronics 2007, 23, pp. 81 - 87.
- [17] De la Escousura-Muniz A., Gonzalez-Garcia M. B., Costa-Garcia A.: Aurothiomalate as an electroactive label for the determination of immunoglobulin M using glassy carbon electrodes as immunoassay transducers. Sensors and Actuators B 2006, 114, pp. 473 - 481.
- [18] Ivanov A., Ivanova O., Rezapkin G., Potapova S., Chumakov K.: Determination of poliovirus-specific IgA in saliva by ELISA tests. Journal of Virological Methods 2005, 126, pp. 45 - 52.
- [19] Heyries K. A., Loughran M. G., Hoffmann D., Homsy A., Blum L. J., Marquette C. A.: Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosensors and Bioelectronics 2008, 23, pp. 1812 - 1818.
- [20] Escamilla-Gómez V., Pedrero M., Pingarrón J. M.: Electrochemical immunosensor designs for the determination of Staphylococcus aureus using 3,3-dithiodipropionic acid di(N-succinimidyl ester)-modified gold electrodes. Talanta 2008, 77, pp. 876 - 881.
- [21] Iliescu C., Chen B., Miao J.: On the wet etching of Pyrex glass. Sensors and Actuators A 2008, 143, pp. 154 - 161.
- [22] Szczypiński R., Pijanowska D. G.: Technologia i zastosowanie poli(dimetylosiloksanu) - PDMS w mikroukładach analitycznych. Elektronika 2008, 11, ss. 249 - 253.
- [23] Henares T. G., Mizutani F., Hisamoto H.: Current development in microfluidic immunosensing chip. Analytica Chimica Acta 2008, 611, p. 17.
- [24] Joshi M., Pinto R., Rao R. V., Mukherji S.: Silanization and antibody immobilization on SU-8. Applied Surface Science 2007, 253, pp. 3127 - 3132.
- [25] Blagoi G., Keller S., Johansson A., Boisen A., Dufva M.: Functionalization of SU-8 photoresist surfaces with IgG proteins. Applied Surface Science 2008, 255, pp. 2896 - 2902.
- [26] Ishida A., Natsume M., Kamidate T.: Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsilane). Journal of Chromatography A 2008, 1213, pp. 209 - 217.
- [27] Zou Z., Jang A., MacKnight E., Wu P. M., Do J., Bishop P. L., Ahn C. H.: Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sensors and Actuators B 2008, 134, pp. 18 - 24.
- [28] Becker H., Gartner C.: Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 2008, 390, pp. 89 - 111.
- [29] Aura S., Sikanen S., Kotiaho T., Franssila S.: Novel hybrid material for microfluidic devices. Sensors and Actuators B 2008, 132, p. 397.
- [30] Dawoud A. A., Kawaguchi T., Markushin Y., Porter M. D., Jankowiak R.: Separation of catecholamines and dopamine-derived DNA adduct Rusing a microfluidic device with electrochemical detection. Sensors and Actuators B 2006, 120, pp. 42 - 50.
- [31] Huang C. J., Chen Y. H., Wang C. H., Chou T. C., Lee G. B.: Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sensors and Actuators B 2007, 122, pp. 461 - 468.
- [32] Morin F., Nishimura N., Griscon L., Lepioufle B., Fujita H., Takamara Y., Tamiya E.: Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques. A step towards neuron-based functional chips. Biosensors and Bioelectronics 2006, 21, pp. 1093 - 1100.
- [33] Dawoud A. A., Kawaguchi T., Jankowiak R.: In-channel modification of electrochemical detector for the detection of bio-targets on microchip. Electrochemistry Communications 2007, 9, pp. 1536 - 1541.
- [34] Liu C. C., Cui D. F.: Design and fabrication of poly(dimethyl-siloxane) electrophoresismicrochip with integrated electrodes. Microsyst Technol 2005, 11: pp. 1262 - 1266.
- [35] Kanai M., Ikeda S., Tanaka J., Go J. S., Nakanishi H., Shoji S.: The multiple sample injector using improved sheath flow to prevent sample dilution. Sensors and Actuators A 2004, 111, pp. 32 - 36.
- [36] Arakawa T., Shirasaki Y., Aoki T., Funatsu T., Shoji S.: Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel. Sensors and Actuators A 2007, 135, pp. 99 - 105.
- [37] Sung J. H., Shuler M. L.: Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices 2009, 11, pp. 731 - 738.
- [38] Tirella A., Vozzi F., Ahluwalia A.: A microfluidic gradient maker for toxicity testing of bupivacaine and lidocaine. Toxicology in Vitro 2008, 22, pp. 1957 - 1964.
- [39] Miserendino S.: Modular microfluidic interconnects using photodefinable silicone microgaskets and MEMS O-rings. Sensors and Actuators A 2008, 143, pp. 7 - 13.
- [40] Renaud L., Malhaire C., Kleimann P., Barbier D., Morin P.: Materials Science and Engineering C 2008, 28, pp. 910 - 917.
- [41] Westwood S.: Enclosed SU-8 and PDMS microchannels with integrated interconnects for chip-to-chip and world-to-chip connections. J. Micromech. Microeng. 2008, 18, pp. 1 - 9
- [42] Leclerc E., David B., Griscom L., Lepioufle B., Fujii T., Layrolle P., Legallaisa C.: Study of osteoblastic cells in a microfluidic environment. Biomaterials 2006, 27, pp. 586 - 595.
- [43] Jeon W., Shin C. B.: Design and simulation of passive mixing in microfluidic systems with geometrie variations. Chemical Engineering Journal 2009, 152, pp. 575 - 582.
- [44] Fang W. F., Yang J. T.: A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sensors and Actuators B 2009, 140, pp. 629 - 642.
- [45] Lee D., Chen Y. T., Bai T. Y.: A study of flows in tangentially crossing micro-channels. Microfluid Nanofluid 2009, 7, pp. 169 - 179.
- [46] Erickson D.: Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluid 2005, 1, pp. 3001 - 318.
- [47] Lucas L. J., Han J. H., Yoon J. Y.: Using highly carboxylated microspheres to simplify immunoassays and enhance diffusional mixing in a microfluidic device. Colloids and Surfaces B, Biointerfaces 2006, 49, pp. 106 - 111.
- [48] Singh M. K., Kang T. G., Meijer H. E. H., Anderson P. D.: The mapping method as a toolbox to analyze, design, and optimize micromixers. Microfluid Nanofluid 2008, 5, pp. 313 - 325.
- [49] Barber R. W., Emerson D. R.: Optimal design of microfluidic networks using biologically inspired principles. Microfluid Nanofluid 2008, 4, pp. 179 - 191.
- [50] Kuwahara T., Ohta H., Kondo M., Shimura M.: Immobilization of glucose oxidase on carbon paper electrodes modifird with conducting polymer and its application to a glucose fiel cell. Bioelectrochemistry 2008, 74, pp. 66 - 72.
- [51] Cakmak G., Kucukyavuz Z., Kucukyavuz S.: Conductive copolymers of polyaniline, polypyrrole and poly(dimethylsiloxane), Synthetic Metals 2005, 151, pp. 10 - 18.
- [52] Lange U., Roznyatovskaya N. V., Mirsky V. M.: Conducting polymers in chemical sensors and arrays. Analytica Chimica Acta 2008, 614, pp. 1 - 26.
- [53] Torbicz W., Pijanowska D.: Polimery elektroprzewodzące w elektronice i analityce biochemicznej. Elektronika 6, 2009, pp. 36 - 43.
- [54] Schöning M. J., Jacobs M., Muck A., Knobbe D. T., Wang J., Chatrathi M., Spillmann S.: Amperometric PDMS glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection. Sensors and Actuators B 2005, 108, pp. 688 - 694.
- [55] Lee J. A., Hwang S., Kwak J., Park S. I., Lee S. S., Lee K. C.: An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sensors and Actuators B 2008, 129, pp. 372 - 379.
- [56] Haefliger D., Cahill B. P., Stemmer A.: Rapid prototyping of micro-electrodes on glass and polymers by laser-assisted corrosion of aluminum film in water. Microelectronic Engineering 2003, 67-68, pp. 473 - 478.
- [57] Lin K. W., Huang Y. K., Su H. L., Hsieh Y Z.: In-channel simplified decouper with renewable electrochemical detection for microchip capillary electrophoresis, Analytica Chimica Acta 2008, 619, pp.115 - 121.
- [58] Castano-Alvarez M., Fernandez-Abedul M. T., Costa-Garcia A.: Amperometric detector designs for capillary electrophoresis microchips. Journal of Chromatography A 2006, 1109, pp. 291 - 299.
- [59] Karuwan C., Wisitsoraat A., Maturos T., Phokharatkul D., Sppat A., Jaruwongrungsee K., Lomas T., Tuantranont A.: Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection. Talanta 2009, 79, pp. 995 - 1000.
- [60] Meacham K. W., Giuly R. J., Guo L., Hochman S., DeWeerth S. P.: A Lithographically-Pattemed, Elastic Multi-electrode Array for Surface Stimulation of Spinal Cord. Biomed Microdevices 2008, 10, pp. 259 - 269.
- [61] Baek J. Y., An J. H., Choi J. M., Park K. S., Lee S. H.: Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sensors and Actuators A 2008, 143, pp. 423 - 429.
- [62] Noh H. S., Huang Y., Hesketh P. J.: Parylene micromolding, a rapid and low-cost fabrication method for parynele microchannel. Sensors and Actuators B 2004, 102, pp. 78 - 85.
- [63] Li C., Han J., Ahn C. H.: Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosensors and Bioelectronics 2007, 22, pp. 1988 - 1993.
- [64] Woytasik M., Grandchamp J. P., Dufour-Gergam E., Martincic E., Gilles J. P., Megherbi S., Lavelley V., Mathet V.: Fabrication of planar and three-dimensional microcoils on flexible substrates. Microsyst Technol 2006, 12, pp. 973 - 978.
- [65] Gonzales M., Axisa F., Bulcke M. V., Brosteaux D., Vandevelde B.: Design of metal interconnects for stretchable electronic circuits. Microelectronics Reliability 2008, 48, pp. 825 - 832.
- [66] Pijanowska D. G., Torbicz W.: Functionalisation of chemically sensitive surfaces for biosensors and microreactors fabrication, ITBM-RBM 2008, 29/2-3, pp. 120 - 132.
- [67] Śpiewak R.: Test immunoenzymatyczny ELISPOT: Perspektywy zastosowań w alergologii i immunologii. Alergol Immunol 2007, 4, s. 77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0020-0024