PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie technik immunoenzymatycznych i mikrofluidycznych do amperometrycznego oznaczania stężenia białka C-reaktywnego

Identyfikatory
Warianty tytułu
EN
Application of immunoenzymatic and microfluidic techniques for amperometric determination of C-reactive protein concentration
Języki publikacji
PL
Abstrakty
PL
CRP jest białkiem ostrej fazy i jednym z najlepszych niespecyficznych markerów określającym ryzyko oraz zaawansowanie choroby niedokrwiennej serca. Bardzo przydatne stają się w tym przypadku wielofunkcyjne urządzenia diagnostyczne z szybką amperometryczną detekcją oraz funkcją wstępnego rozdziału próbki. Układy mikroprzepływowe umożliwiają taki rozdział przy małej objętości badanych próbek i reagentów, co znacząco obniża koszty testu. Z wyjątkiem nowych aptaczujników, jedynie immunoczujniki zapewniają specyficzność wobec poszukiwanego analitu w próbce. W nieprzezroczystych próbkach, jakimi są płyny fizjologiczne, niemożliwe jest zastosowanie optycznych metod detekcji, stąd konieczne jest zastosowanie metody znakowania enzymem przeciwciał w immunoczujnikach i użycie innego rodzaju detekcji np. elektrochemicznej. Ze względu na niski poziom szumów tła i możliwość szybkiej detekcji, najczęściej stosuje się detekcję amperometryczną. Celem naszych prac jest opracowanie amperometrycznych immunoczujników mikroprzepływowych do diagnostyki medycznej do oznaczania CRP.
EN
CRP is acute phase protein and one of the best nonspecific diagnostic markers in heart diseases. Microfluidic systems offer function of preliminary probe separation with small consumption of probes and reagents, which decrease cost of unit test. Except newly developed aptasensors, only immunosensors provide specificity to determined analit in composed analyzed probe. In the case of nontransparent samples, like physiological fluids, immunosensors with electrochemical detection are sensors of choice, e.g. amperometric. For electrochemical detection enzyme labeled antibody is used. In order to decrease background noise and obtain fast response, amperometric sensors are mostly applied. An aim of our research is development of microfluidic type amperometric immunosensors for medical diagnostics, in particular for CRP determination.
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 61 poz., wykr.
Twórcy
autor
autor
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • [1] Marnell L., Mold C. and Clos W. D.: C-reactive protein: Ligands, receptors and role in inflammation. Clinical Immunology, 2005, 117, pp. 104-111.
  • [2] Orzędała-Koszel U., Bachanek T., Kaczmarek-Borowska B.: Białko C-reaktywne jako czynnik diagnostyczny w stanach zapalnych jamy ustnej i chorobach nowotworowych. C-Reactive Protein as a Diagnostic Factorin Inflammatory Processes of Oral Cavity and Neoplasma Diseases. Dent. Med. Probl., 2005, 42(1), pp. 131-136.
  • [3] Volanakis J. E.: Human C-reactive protein: expression, structure, and function Molecular Immunology, 2001, 38, pp. 189-197.
  • [4] Szalai A. J.: The biological functions of C-reactive protein. Vascular Pharmacology, 2002, 39, pp. 105-107.
  • [5] Mora S. and Ridker P. M.: Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) - Can C-Reactive Protein Be Used to Target Statin Therapy inPrimary Prevention? The American Journal of Cardiology, 2006, 97(2A), pp. 33A-41A
  • [6] Wiedener J. M.: C-reactive protein measurenment in the patient with vascular disease. Journal of Vascular Nursing 2007, 25, pp. 51-54
  • [7] Clone B. and Olshaker J. S.: The C-reactive protein. The Journal of Emergency Medicine, 1999, 17(6), pp. 1019-1025.
  • [8] Meyer M. et al.: CRP determination based on a novel magnetic biosensor. Biosensors and Bioelectronics, 2007, 22, pp. 973-979.
  • [9] Yang Z. and Zhou D. M.: Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clinical Biochemistry, 2006, 39, pp. 771-780
  • [10] Lode P.: Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods Clinical Biochemistry 2005, 38, pp. 591-606.
  • [11] Kemmler M., et al.: Compact point-of-care system for clinical diagnosis. Sensors and Actuators B, 2009, 139, pp. 44-51.
  • [12] Bodi V., et. al: Risk stratification in non-ST elevation acute coronary syndromes. Predictive power of troponin I, C-reactive protein, fibrinogen and homocysteine. International Journal of Cardiology, 2005, 98, pp. 277-283.
  • [13] Takemura Y., et al.: Economic consequence of immediate testing for C-reactive protein and leucocyte count in new outpatients with acute infection. Clinica Chimica Acta, 2005, pp. 114-121.
  • [14] Meyer M. Hartmann M., Keusgen M.: SRP-based immunosensor for the CRP detection - A New metod to detect a well known protein Biosensors and Bioelectronics, 2006, 21, pp. 1987-1990.
  • [15] Vikholm-Lundin I. and Albers W. M.: Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosensors and Bioelectronics 2006, 21, pp. 1141-1148.
  • [16] Hu W. P., et al.: Immunodetection of pentamer modified C-reactive protein using surface plasmon resonance biosensing. Biosensors and Bioelectronics, 2006, 21, pp. 1631-1637.
  • [17] Domnanich P., et al.: Protein microarray for the analysis of human melanoma biomarkers. Sensors and actuators B, 2009, 139: pp. 2-8.
  • [18] Brandenburg A., et al.: Biochip readout system for point-of-care application. Sensors and Actuators B, 2009, 139, pp. 245-251.
  • [19] Albrecht C, Kaeppel N., and Gauglitz G.: Two immunoassay formats for fully automated CRP detection in human serum. Anal Bioannal Chem, 2008, 391, pp. 1845-1852.
  • [20] He X., Dandy D. S., and Henry C. S.: Microfluidic protein patterning on silicon nitride using solvent-extracted poly(dimethyloxane) channels. Sensors and Actuators B, 2008, 129, pp. 811-817.
  • [21] Peoples M. C., Phillips T. M., and Karnes H.T.: Demonstration of a direct capture immunoaffinity separation for C-reactive protein using a capillary-based microfluidic device. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, pp. 376-382.
  • [22] Wolf M., et al.: Simultanous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosensors and Bioelectronics, 2004, 19, pp. 1193-1202.
  • [23] Hennessy H., et al.: Electrochemical investigations of the inter-action of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Analytica Chimica Acta, 2009, 643, pp. 45-53.
  • [24] Kurosawa S., et al.: Evaluation of high affinity QCM immunosensor using antibody fragmentation and 2-methacry-loxyethyl phosphorylcholine (MPC) polymer. Biosensors and Bioelectronics, 2004, 20, pp. 1134-1139.
  • [25] Aizawa H., et al.: Conventional diagnosis of C-reactive protein in serum using latex piezoelectric immunoassay. Sensors and Actuators B, 2001, 76, pp. 173-176.
  • [26] Kazimierczak B., Pijanowska G. D., Maliszewska-Mazur M. Łukowska E., Kruk J., Torbicz W.: Amperometryczne oznaczanie przeciwciał znakowanych fosfatazą alkaliczną dla potrzeb immunoczujnika białka C-reaktywnego. Mat. XV Konf. KBliB, Wrocław, 2007, pp. 133-136.
  • [27] Kazimierczak B., Pijanowska D.: Amperometryczne oznaczanie przeciwciał anty-CRP znakowanym fosfatazą alkaliczną. Elektronika, 2008, 6, pp. 41^19.
  • [28] Kazimierczak B. and Pijanowska D. G.: Amperometryczne oznaczanie przeciwciał anty-CRP znakowanych fosfatazą alkaliczną. COE 2008, Poznań, 23-25 czerwca, 2008.
  • [29] Kazimierczak B., Pijanowska D. G., and Torbicz W.: Application of enzyme labeled antibodies for immunosensors based on elecetrochemical detection. Pol. J. of Chem, 2008, 82, pp. 1255-1264.
  • [30] Pultar J., et al.: Aptamer-antibody on chip sandwich immunoassay for detection of CRP in spiked serum. Biosensors and Bioelectronics, 2009, 24, pp. 1456-1461.
  • [31] Das T., Mandal C.: Protein A-a new ligand for human C-reactive protein. FEBS Letters, 2004, 576, pp. 107-113.
  • [32] Yang Y. N., Lin H. I., Wang J. H., Shieh S. C, Lee G. B.: An integrated microfluidic system for C-reactive protein measurement. Biosensors and Bioelectronics, 2009, 24, pp. 3091-3096.
  • [33] Biani A., Centi S., Tombrlli S., Minunni M., Mascini M.: Development of an optical RNA-based aptasensor for C-reactive protein. Anal Bioannal Chem, 2008, 390, pp. 1077-1086.
  • [34] Kim K. S., et al.: The fabrication, characterization and application of aptamer-functonalized Si-nanowire FET biosensor. Nanotechnology, 2009, 20, pp. 6pp.
  • [35] Mairal T., et al.: Aptamers: molecular tools for analytical applications. Anal Bioanal Chem, 2008, 390, pp. 989-1007
  • [36] Balamurugan S., et al.: Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem, 2008, 390, pp. 1009-1021.
  • [37] Kang Y., et al.: Electrochemical detection of trombin by sandwich approach using antibody and aptamer. Biochemistry, 2008, 73, pp. 76-81.
  • [38] Henares T. G., Mizutani R., and Hisamoto H.: Current development in microfluidic immunosensing chip. Analytica Chimica Acta, 2008, 6(11), pp. 17-30.
  • [39] Joshi M., et al.: Silanization and antibody immobilization on SU-8. Applied Surface Science, 2007, 253, pp. 3127-3132
  • [40] Blagoi G., et al.: Functionalization of SU-8 photoresist surfaces with IgG proteins. Applied Surface Science, 2008, 255, pp. 2896-2902.
  • [41] Meacham K. W., et al.: A Lithographically-Patterned, Elastic Multielectrode Array for Surface Stimulation of Spinal Cord. Biomed Microdevices, 2008. 10(2), pp. 259-269.
  • [42] Baek J. Y., et al.: Flexible polymeric dry electrodes for the longterm monitoring of ECG. Sensors and Actuators A, 2008, 143, pp. 423-429.
  • [43] Illiescu C., Chen B., and Miao J.: On the wet etching of Pyrex glass. Sensors and Actuators A, 2008, 143, pp. 154-161.
  • [44] Liu J., et al.: Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B, 2009, 141, pp. 646-651.
  • [45] Tsai Y. C., Ho C. L., and Liao S. W.: Nanobiosensors prepared by electrodeposition of glucose oxidase in PMMA nanochannels produced by atomic force microscopy nanolithography. Electrochemistry Communications, 2009, 11, pp. 1316-1319.
  • [46] Castano-Alvarez M., Fernandez-Abedul M. T., and Costa-Garcia A.: Amperometric detector designs for capillary electrophoresis microchips. Journal of Chromatography A, 2006, 1109, pp. 291-299.
  • [47] Ishida A., Natsume M., and Kamidate T.: Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsilane). Journal of Chromatography A, 2008, 1213, pp. 209-217.
  • [48] Noh H. S., Huang Y., and Hesketh P. J.: Parylene micromolding, a rapid and low-cost fabrication method for parynele microchannel. Sensors and Actuators B, 2004, 102, pp. 78-85.
  • [49] Li C., Han J., and Ann C. H., Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosensors and Bioelectronics 2007, 22, pp. 1988-1993.
  • [50] Woytasik M., et al.: Fabrication of planar and three-dimensional microcoils on flexible substrates. Microsyst Technol, 2006, 12.
  • [51] Dawoud A. A., et al.: Separation of catecholamines and dopaminederived DNA adduct Rusing a microfluidic device with electrochemical detection. Sensors and Actuators B 2006,120, pp. 42-50.
  • [52] Huang C. J., et al.: Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sensors and Actuators B 2007, 122, pp. 461-468.
  • [53] Morin, F., et al.: Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: A step towards neuron-based functional chips. Biosensors and Bioelectronics 2006, 21, pp. 1093-1100.
  • [54] Dawoud, A. A., Kawaguchi T, and Jankowiak R.: In-channel modification of electrochemical detector for the detection of bio-targets on microchip. Electrochemistry Communications, 2007, 9, pp. 1536-1541.
  • [55] Liu C. and Cui D. F.: Design amd fabrication of poly(dimethylsiloxane) electrophoresis microchip with integrated electrodes. Microsyst Technol, 2005, 11, pp. 1262-1266.
  • [56] Baldini F., et al.: An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay. Sensors and Actuators B, 2009, 139, pp. 64-68.
  • [57] Rauf S., Ihsan A., Akharat K., Ghuri M. A., Rahman M., Anwar M. A., Khalid A. M.: Glucose oxidase immobilization on a novel cellulose acetate-polymethylmetthacrylate membrane, Journal of Biotechnology 2006,121, pp. 251-360
  • [58] Kakuta M. H. T, Kazuno S., Murayama K., Ueno T.: Development of the microchip-based repeatable immunoassay system for clinical diagnosos. Measurement Science and Technology, 2006, 17, pp. 3189-3194.
  • [59] Messina G. A., Panini N. V, Martinez N. A., Raba J.: Microfluidic immunosensor design for the quantification of interleukin-6in human serum samples. Analytical Biochemistry, 2008, 380, pp. 262-267.
  • [60] Kandimalla V. B., Necta N. S., Karanth N. G., Thakur M. S., Roshini K. R., Reni B. E. A., Pasha A., Karanth N. G. K.: Regeneration of ethyl parathion antibodies for repeated use in immunosensor: A study on dissociation of antigens from antibodies. Biosensors and Bioelectronics, 2004, 20, pp. 902-905.
  • [61] Liu Y.: Electrochemical detection of prostate-specific antigen based on gold colloids/alumina derived sol-gel film, Thin Solid Films, 2008, 516, pp.1803-1808.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0019-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.