PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ambient temperature or moderately cooled semiconductor hot electron bolometer for mm and sub-mm regions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A model of semiconductor hot electron bolometer (SHEB), in which electromagnetic radiation heats only electrons in narrow-gap semiconductor without its lattice slow-response heating, is considered. Free carrier heating changes the generation-recombination processes that are the reason of semiconductor resistance rise. It is estimated, that Hg₀.₈Cd₀.₂Te detector noise equivalent power (NEP) for mm and sub-mm radiation wavelength range can reach NEP ~ 10⁻¹¹ W at Δf = 1 Hz signal gain frequency bandwidth. Measurements performed at electromagnetic wave frequencies v = 36, 39, 55, 75 GHz, and at 0.89 and 1.58 THz too, with non-optimized Hg₀.₈Cd₀.₂Te antenna-coupled bolometer prototype confirmed the basic concept of SHEB. The experimental sensitivity Sv ~ 2 V/W at T = 300 K and the calculated both Johnson-Nyquist and generation-recombination noise values gave estimation of SHEB NEP ~ 3.5 × 10⁻¹⁰ W at the band-width Δf = 1 Hz and v = 36 GHz.
Słowa kluczowe
Twórcy
autor
  • Lashkariov Institute of Semiconductor Physics, 41 Nauki Ave., 03-028 Kiev, Ukraine
Bibliografia
  • [1] P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910-928 (2002).
  • [2] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin-Heidelberg-New-York, 2003.
  • [3] E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing”, in Terahertz Sensing Technology, Vol. 2, pp. 1-103, edited by D.L. Woolard, W.R. Loerop, and M.S. Shur, World Scientific, New York, 2003.
  • [4] N. Karpowicz, H. Zhong, J. Xu, K.I. Lin, J. Sh. Hwang, and X.C. Zhang, “Comparison between pulsed terahertz timedomain imaging and continuous wave terahertz imaging”, Semicond. Sci. Technol. 20, S293-S299 (2005).
  • [5] J.E. Huffmann, “Infrared detectors for 2 to 220 microns astronomy”, Proc. SPIE 2274, 157-169 (1995).
  • [6] J. Grade, P. Haydon, and D. Van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”, Proc. IEEE 95, 1583-1591 (2007).
  • [7] E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complimentary square spiral antenna in the THz region”, Microw. Opt. Let. 48, 524-529 (2006).
  • [8] A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, The Netherlands, 2000.
  • [9] A. Skalare, W.R. McGrath, P. Echternach, H.G. LeDuc, I. Siddiqi, A. Verevkin, and D.E. Prober, “Aluminium hotelectron bolometer mixers at submillimeter wavelengths”, IEEE T. Appl. Supercon. 11, 641-644 (2001).
  • [10] J.R. Gao, J.N. Hovenie, Z.Q. Yang, J.J.A. Baselmans, A. Baryshev, M. Hajenius, T.M. Klapwijk, A.J.L. Adam, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer”, Appl. Phys. Lett. 86, 244104-1-244104-3 (2005).
  • [11] P.L. Richards, “Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1-24 (1994).
  • [12] P.W. Norton, and M. Kohin, “Technology and application advancements of uncooled imagers”, Proc. SPIE 5783, 524-530 (2005).
  • [13] A. Satou, I. Khmirova, V. Ryzhii, and M. Shur, “Plasma and transit-time mechanisms of the terahertz radiation detection in high-electron mobility transistor”, Semicond. Sci. Technol. 18, 460-469 (2003).
  • [14] R. Tauk, F. Teppe, S. Bounbanga, W. Knap, Y.M. Meziami, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006).
  • [15] W. Knap, F. Teppe, A. El Fatimy, N. Dyakonova, S. Boubanga, D. Coquillat, C. Gaquiere, A. Shchepetov, and S. Bollaert, “Room temperature detection and emission of terahertz radiation by plasma oscillations in nanometer size transistors”, Digest of IRMMW-THz-2007 Conf., 998-999 (2007).
  • [16] V.N. Dobrovolsky and F.F. Sizov, “Room temperature, or moderately cooled, fast THz semiconductor hot electron bolometer”, Semicond. Sci. Technol. 22, 103-106 (2007).
  • [17] M. Born and E. Wolf, Principles of Optics, Pergamon Press, New-York, 1964.
  • [18] K. Seeger, Semiconductor Physics, Springer, Wien, 1973.
  • [19] E. Carroll, Hot Electron Microwave Generators, Edward Arnold LTD, London, 1970.
  • [20] V.V. Vladimirov, R.F. Volkov, and L.Z. Meilichov, Plasma of Semiconductors, Atomizdat, Moscow, 1979. (in Russian)
  • [21] C.T. Elliot and I.L. Spain, “Warm electron effects in narrow-gap HgCdTe alloy at ambient temperature”, J. Phys. C Solid State 7, 727-735 (1974).
  • [22] Measurements at Millimeter and Submillimeter Waves, edited by R.A. Valitov, and B.I. Makarenko, Radio i Svyaz’, Moscow, 1984. (in Russian)
  • [23] Yu. E. Kamenev, “Hollow-cathode HCN laser”, Quantum Electron. 29, 269-270 (1999).
  • [24] E.A. Shaner, M. Lee, M.C. Wanke, A.D. Grine, and J.L. Reno, “Tunable THz detector based on a grating gated field-effect transistor”, Proc. SPIE 6120, 6120-06 (2005).
  • [25] E.N. Grossman, and A.J. Miller, “Active millimetre-wave imaging for concealed weapons detection”, Proc. SPIE 5077, 62-70 (2003).
  • [26] A. Luukanen, and V.P. Viitanen, “Terahertz imaging system based on antenna-coupled microbolometers”, Proc. SPIE 3378, 34-44 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0017-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.