PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite grade pheromone ant colony optimization for image segmentation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By combining the decision process of ant colony optimization (ACO) with the multistage decision process of image segmentation based on active contour model (ACM), an algorithm called finite grade ACO (FACO) for image segmentation is proposed. This algorithm classifies pheromone into finite grades and updating of the pheromone is achieved by changing the grades and the updated quantity of pheromone is independent from the objective function. The algorithm that provides a new approach to obtain precise contour is proved to converge to the global optimal solutions linearly by means of finite Markov chains. The segmentation experiments with ultrasound heart image show the effectiveness of the algorithm. Comparing the results for segmentation of left ventricle images shows that the ACO for image segmentation is more effective than the GA approach and the new pheromone updating strategy appears good time performance in optimization process.
Twórcy
autor
autor
autor
  • College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310032, China, fyjing@zjut.edu.cn
Bibliografia
  • [1] M. Kass, A. Witkin, and D. TeizoPoulos, “Snakes: active contour models”, Int. J. Comp. Visiton 1, 321-331 (1978).
  • [2] L.D. Cohen, “On active contour models and balloons”, Comp. Vision Graph. 53, 211-218 (1991).
  • [3] A.A. Amini and C.R. Jain, “Using dynamic programming for solving variational problems in vision”, IEEE T. Pattern Anal. 12, 855-867 (1990).
  • [4] D.J. Williams and M. Shah, “A fast algorithm for active contours”, Proc. 3rd Int. Conf. on Computer Vision, 592-595 (1990).
  • [5] L.A. MacEachern and T. Manku, “Genetic algorithms for active contour optimization”, Proc. IEEE Int. Symp. on Circuits and Systems 4, 229-232 (1998).
  • [6] S.R. Gunn and M.S. Nixon, “Snake head boundary extraction using global and local energy minimization”, Proc. 13th Int. Conf. on Pattern Recognition, 581-585 (1996).
  • [7] C. Xu and J.L. Prince, “Snake shape and gradient vector flow”, IEEE T. Pattern Anal. 7, 359-369 (1998).
  • [8] W. Hsien-Hsun, L. Jyh-Charn, and C. Chui, “A wavelet-frame based image force model for active contouring algorithms”, IEEE T. Image Process. 9, 1983-1988 (2000).
  • [9] M. Dorigo, V. Manjezzo, and A. Colorni, “The ant system: Optimization by a colony of cooperating agents”, IEEE T. Syst. Man Cy. B2692, 29-41 (1996).
  • [10] M. Dorigo and L.M. Ganbardella, “Ant colony system: A cooperating learning approach to the travelling salesman problem”, IEEE T. Evolut. Comput. 1, 53-66 (1997).
  • [11] B. Bullnheimer, R. Hartl, and C. Strauss, “Applying the ant system to the vehicle routing problem”, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academics, 285-296 (1998).
  • [12] T. Stutzle, “An ant approach to the flow shop problem [C]”, Proc. Eur. Cong. on Intelligent Techniques and Soft Computing, Aachen, Germany, 1560-1564 (1998).
  • [13] S. Ouadfel and M. Batouche, “Ant colony system with local search for Markov random field image segmentation [C]”, Proc. Int. Conf. on Image Processing 1, 133-136 (2003).
  • [14] S. Meshoul and M. Batouche, “Ant colony system with external dynamics for point matching and pose estimation [J]”, Pattern Recogn. 3, 823-826 (2002).
  • [15] F. Yuanjing, “Ant colony cooperative optimization and its application in image segmentation”, PhD Dissertation, Xi’an Jiaotong University, China, 2005.
  • [16] C. Blum and M. Dorigo, “The hyper-cube framework for ant colony optimization”, IEEE T. Syst. Man Cy. 34, 1161-1172 (2004).
  • [17] L. Dazhong, Foundation of Variational Methods, National Defence Industry Press, Beijing, 2004.
  • [18] A. Mishraa, P.K. Duttab, and M.K. Ghoshc, “A GA based approach for boundary detection of left ventricle with echocardio graphic image sequences”, Image Vision Comput. 21, 967-976 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0017-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.