Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper gives a short overview of various methods of optical mammography, emphasizing scanning time-domain mammography. The results of a clinical study on time-domain optical mammography are reviewed, comprising 154 patients carrying a total of 102 carcinomas validated by histology. A visibility score attributed to each carcinoma as qualitative measure of tumour detectability indicates acceptable sensitivity but poor specificity for discrimination between malignant and benign lesions. Likewise, a multi-variate statistical analysis yields sensitivity and specificity between 80% and 85% for tumour detection and discrimination with respect to normal (healthy) breast tissue, but values less than 70% for discrimination between malignant and benign breast lesions, being too low to be of clinical relevance. For 87 of the 88 tumours detected retrospectively in both projection optical mammograms, optical properties and tissue parameters were derived based on the diffraction of photon density waves by a spherical inhomogeneity as forward model. Following injection of a bolus of indocyanine green as non-targeted absorbing contrast agent, dynamic contrast-enhanced time-domain optical mammography was carried out on a small number of patients, but no differences in wash-out kinetics of indocyanine green between tumours and healthy breast tissue were observed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
147--162
Opis fizyczny
Bibliogr. 42 poz., il., rys. wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin, Germany, Herbert.Rinneberg@ptb.de
Bibliografia
- [1] A. Smith, “Full-field breast tomosynthesis”, Radiol. Manage. 27, 25-31 (2005).
- [2] T. Wu, R.H. Moore, A. Rafferty, and D.B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis”, Med. Phys. 31, 2636-2647 (2004).
- [3] S. Kappadath and C. Shaw, “Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections”, Med. Phys. 32, 3395-3408 (2005).
- [4] A. Malich, M. Facius, R. Anderson, J. Bottcher, D. Sauner, A. Hansch, C. Marx, A. Petrovitch, S. Pfleiderer, and W. Kaiser, “Influence of size and depth on accuracy of electrical impedance scanning”, Eur. Radiol. 13, 2441-2446 (2003).
- [5] T. Diebold, V. Jacobi, B. Scholz, C. Hensel, C. Solbach, M. Kaufmann, F. Viana, J. Balzer, J. Peters, and T. Vogl, “Value of electrical impedance scanning in the evaluation of BI-RADSTM II/IV/V-lesions”, Technol. Cancer Res. T. 4, 93-97 (2005).
- [6] J. Lorenzen, R. Sinkus, M. Lorenzen, M. Dargatz, C. Leussler, P. Roschmann, and G. Adam, “MR elastography of the breast: preliminary clinical results”, Röfo. Fortschr. Geb. Röntgenstr. Bildgeb. Verfahr. 174, 830-834 (2002).
- [7] P.J. Bolan, S. Meisamy, E.H. Baker, J. Lin, T. Emory, M. Nelson, L.I. Everson, D. Yee, and M. Garwood, “In vivo quantification of choline compounds in the breast with 1H MR spectroscopy”, Magn. Reson. Med. 50, 1134-1143 (2003).
- [8] M.A. Thomas, N. Wyckoff, K. Yue, N. Binesh, S. Banakar, H.-K. Chung, J. Sayre, and N. DeBruhl, “Two-dimensional MR spectroscopic characterization of breast cancer in vivo”, Technol. Cancer Res. T. 4, 99-106 (2005).
- [9] M.D. McDonough, E.R. DePeri, and B.A. Mincey, “The role of positron emission tomographic imaging in breast cancer”, Curr. Oncol. Rep. 6, 62-68 (2004).
- [10] E.L. Rosen, T.G. Turkington, M.S. Soo, J.A. Baker, and R.E. Coleman, “Detection of primary breast carcinoma with a dedicated large-field-of-view FDG PET mammography device: Initial experience”, Radiology 234, 527-534 (2005).
- [11] I.N. Weinberg, D. Beylin, V. Zavarzin, S. Yarnall, P.Y. Stepanov, E. Anashkin, D. Narayanan, S. Dolinsky, K. Lauckner, and L.P. Alder, “Positron emission mammography: high-resolution biochemical breast imaging”, Technol. Cancer Res. T. 4, 55-60 (2005).
- [12] M.S. Patterson, B. Chance, and B.C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties”, Appl. Opt. 28, 2331-2336 (1989).
- [13] S.R. Arridge, “Optical tomography in medical imaging”, Inverse Probl. 15, R41-R93 (1999).
- [14] A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A.J. Berger, D. Hsiang, J. Butler, R.F. Holcombe, and B.J Tromberg, “Spectroscopy enhances the information content of optical mammography”, J. Biomed. Opt. 7, 60-71 (2002).
- [15] D. Grosenick, K.T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P.M. Schlag, and H. Rinneberg, “Time-domain optical mammography: Initial clinical results on detection and characterization of breast tumours”, Appl. Opt. 42, 3170-3186 (2003).
- [16] D. Grosenick, K.T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P.M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients”, Phys. Med. Biol. 50, 2429-2449 (2005).
- [17] D. Grosenick, H. Wabnitz, K.T. Moesta, J. Mucke, P.M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas”, Phys. Med. Biol. 50, 2451-2468 (2005).
- [18] H. Rinneberg, D. Grosenick, K.T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Möller, B. Wassermann, and P.M. Schlag, “Scanning time-domain optical mammography: Detection and characterization of breast tumours in vivo”, Technol. Cancer Res. T. 4, 483-496 (2005).
- [19] M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. Mantulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results”, Proc. Natl. Acad. Sci. USA 94, 6468-6473 (1997).
- [20] L. Götz, S.H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen)”, Akt. Radiol. 8, 31-33 (1998).
- [21] H. Dehghani, B.W. Pogue, S.P. Poplack, and K.D. Paulsen, “Multi-wavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results”, Appl. Opt. 42, 135-145 (2003).
- [22] S.B. Colak, M.B. van der Mark, G.W. 't Hooft, J.H. Hoogenraad, E.S. van der Linden, and F.A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection”, IEEE J. Sel. Top. Quant. 5, 1143–1158 (1999).
- [23] D. Grosenick, H. Wabnitz, H. Rinneberg, K.T. Moesta, and P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications”, Appl. Opt. 38, 2927-2943 (1999).
- [24] A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, “Four-wavelength time-resolved optical mammography in the 680-980-nm range”, Opt. Lett. 28, 1138-1140 (2003).
- [25] T. Yates, J.C. Hebden, A. Gibson, N. Everdell, S.R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager”, Phys. Med. Biol. 50, 2503-2517 (2005).
- [26] J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain-continuous wave clinical system for breast imaging”, Med. Phys. 30, 235-247 (2003).
- [27] J.C. Hebden and S.R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain”, Appl. Opt. 35, 6788-6796 (1996).
- [28] S. Carraresi, T.S.M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration”, Appl. Opt. 40, 4622-4632 (2001).
- [29] B. Wassermann, A. Kummrow, K.T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Möller, R. Macdonald, P.M. Schlag, and H. Rinneberg, “In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms”, Opt. Express 13, 8571-8583 (2005).
- [30] D. Grosenick, H. Wabnitz, K.T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stößel, B. Wassermann, P.M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography”, Phys. Med. Biol. 49, 1165-1181 (2004).
- [31] H.Q. Woodard and D.R. White, “The composition of body tissues”, Brit. J. Radiol. 69, 1209-1218 (1986).
- [32] J.W. Tukey, Exploratory Data Analysis, Addison Wesley Publ., Reading, MA, 1977.
- [33] P. Taroni, A. Pifferi, A. Torricelli, L. Spinelli, G.M. Danesini, and R. Cubeddu, “Do shorter wavelengths improve contrast in optical mammography?”, Phys. Med. Biol. 49, 1203-1215 (2004).
- [34] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wiley, New York, 2001.
- [35] M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore,J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumour tissue using fluorescence near-infrared reflectance imaging: a case study”, Photochem. Photobiol. 72, 94-102 (2000).
- [36] X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with indocyanine green”, Med. Phys. 30, 1039-1047 (2003).
- [37] D.A. Boas, M.A. O'Leary, B. Chance, and A.G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications”, Proc. Natl. Acad. Sci. USA 91, 4887-4891 (1994).
- [38] P. Vaupel, S. Briest, and M. Hoeckel, “Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications”, Wien. Med. Wochenschr. 152, 334-342 (2004).
- [39] R.L.P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H.J.C.M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy”, Phys. Med. Biol. 50, 2573-2581 (2005).
- [40] K.T. Moesta, S. Fantini, H. Jess, S. Totkas, M.A. Franceschini, M. Kaschke, and P.M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography”, J. Biomed. Opt. 3, 129-136 (1998).
- [41] P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm”, J. Biomed. Opt. 9, 464-473 (2004).
- [42] X. Cheng, J.M. Mao, R. Bush, D.B. Kopans, R.H. Moore, and M. Chorlton, “Breast cancer detection by mapping haemoglobin concentration and oxygen saturation”, Appl. Opt. 42, 6412-6421 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0017-0006