PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo simulation of light propagation in adult brain: influence of tissue blood content and indocyanine green

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Near-infrared spectroscopy (NIRS), applied to a human head, is a noninvasive method in neurointensive care to monitor cerebral hemodynamics and oxygenation. The method is particularly powerful when it is applied in combination with indocyanine green (ICG) as a tracer substance. In order to assess contributions to the measured optical density (OD) which are due to extracerebral circulation and disturb the clinically significant intracerebral signals, we simulated the light propagation in an anatomically representative model of the adult head derived from MRI measurements with the aid of Monte Carlo methods. Since the measured OD signal depends largely on the relative blood content in various transilluminated tissues, we weighted the calculated densities of the photon distribution under baseline conditions within the tissues with the changes and aberrations of the relative blood volumes which we expect to prevail under physiological conditions. Furthermore, the influence of the IGC dye as a tracer substance was assessed. We conclude that up to about different 70% of the measured OD signal may have its origin in the tissues of interest under optimal conditions, which is mainly due to the extrapolated high relative blood content of brain tissue along with the influence of ICG.
Twórcy
autor
autor
autor
  • Institute of Biomedical Engineering, University and Swiss Federal Institute of Technology, Gloriastrasse 35, CH-8092 Zurich, Switzerland, niederer@biomed.ee.ethz.ch
Bibliografia
  • [1] F.F. Joebsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters”, Science 189, 1264-1267 (1977).
  • [2] E. Keller, A. Nadler, H. Alkadhi, S.S. Kollias, Y. Yonekawa, and P. Niederer : “Noninvasive measurement of regional cerebral blood flow and regional blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828-839 (2003).
  • [3] A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink : “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain”, Neuroimage 31, 600-608 (2006).
  • [4] P.W. McCormick, M. Stewart, G. Lewis, M. Dujovny, and J.I. Ausman : “Intracerebral penetration of infrared light”, J. Neurosurg. 76, 315-318 (1992).
  • [5] S. Hongo, K. Kobayashi, H. Okudera, M. Hokama, and F. Nakagawa : “Noninvasive cerebral optical spectroscopy: Depth-resolved measurements of cerebral hemodynamics using indocyanine green”, Neurol. Res. 17, 89-93 (1995).
  • [6] H. Owen-Reece, C.E. Elwell, J.S. Wyatt, and D.T. Delpy, “The efect of scalp ischemia on measurement of cerebral blood volume by near-infrared spectroscopy”, Physiol. Meas. 17, 279-286 (1996).
  • [7] P. Hopton, T.S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination”, J. Appl. Physiol. 87, 1981-1987 (1999).
  • [8] T.J. Germon, P.D. Evans, N.J. Barnett, P. Wall, A.R. Manara, and R.J. Nelson, “Cerebral near infrared spectroscopy: Emitter-detector separation must be increased”, Brit. J. Anaesth. 82, 831-837 (1999).
  • [9] M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H.U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom”, Phys. Med. Biol. 44, 1743-1753 (1999).
  • [10] S.J. Matcher, C.E. Elwell, C.E. Cooper, D.T. Cope, and M. Delpy, “Absolute quantification methods in tissue”, Proc. SPIE 2389, 486-495 (1995).
  • [11] S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy”, Pediatr. Res. 58, 568-573 (2005).
  • [12] V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: A multichannel time-resolved near-infrared topography study”, J. Biomed. Opt. 10, 011012 (2005).
  • [13] M. Wolf, U. Wolf, J.H. Choi, R. Gupta, L.P. Safonova, L.A. Paunescu, A. Michalos, and E. Gratton, “Detection of the fast neuronal signal on the motor cortex using functional frequency domain near infrared spectroscopy” Adv. Exp. Med. Biol. 510, 193-197 (2003).
  • [14] M. Kohl-Bareis, H. Obrig, J. Steinbrink, K. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: Separation of brain from skin and skull signals”, J. Biomed. Opt. 7, 464–470 (2002).
  • [15] J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, W.M. Kuebler, and M. Wolfgang, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass”, J. Thorac. Cardiov. Sur. 132, 1172-1178 (2006).
  • [16] A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426-435 (2005).
  • [17] F.F.M. de Mul, W. Steenbergen, and J. Greve, “Doppler Monte Carlo simulations of light scattering in tissue to support laser-Doppler perfusion measurements”, Technol. Health Care 7, 171-183 (1999).
  • [18] M. Firbank, S.R. Arridge, M. Schweiger, and D.T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions”, Phys. Med. Biol. 41, 767-783 (1996).
  • [19] E. Okada, and D.T. Delpy, “Efects of scattering of arachnoid trabeculae on light propagation in the adult brain”, Proc. OSA Biomedical Topical Meeting, 256-258 (2000).
  • [20] T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo-difusion method for light propagation in three dimensional models with low scattering layer”, Proc. OSA Biomedical Topical Meeting, 116-118 (2001).
  • [21] M. Watanabe, K. Honjo, K. Yokoyama, and E. Okada, “Monte Carlo analysis of light propagation in the exposed brain in the wavelength range of 400-950 nm”, Proc. OSA Biomedical Topical Meeting, 158-160 (2001).
  • [22] E. Okada, M. Firbank, and D.T. Delpy, “The efect of overlying tissue on the spatial sensitivity profle of near-infrared spectroscopy”, Phys. Med. Biol. 40, 2093-2108 (1995).
  • [23] E. Okada, M. Firbank, M. Schweiger, S.R. Arridge, and D.T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head”, Appl. Opt. 36, 21-31 (1997).
  • [24] J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head”, Phys. Med. Biol. 46, 879-896 (2001).
  • [25] M. Firbank, E. Okada, and D.T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses”, Neuroimage 8, 69-78 (1998).
  • [26] Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models”, Appl. Opt. 42, 2881-2887 (2003).
  • [27] D.A. Boas, J.P. Culver, J.J. Stott, and A.K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head”, Opt. Express 10, 159- 170 (2002).
  • [28] G. Strangman, M.A. Franceschini, and D.A. Boas, “Factors afecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters”, Neuroimage 18, 865-879 (2003).
  • [29] H.H. Schmidek, L.M. Auer, and J.P. Kapp, “The cerebral venous system”, Neurosurgery 17, 663-678 (1985).
  • [30] M. Wolf, G. Duc, M. Keel, P. Niederer, K. von Siebenthal, and H.U. Bucher, “Continuous noninvasive measurement of cerebral arterial and venous oxygen saturation at the bedside in mechanically ventilated neonates”, Crit. Care. Med. 25, 1579-1582 (1997).
  • [31] H. Ito, I. Kanno, C. Kato, T. Sasaki, K. Ishii, Y. Ouchi, A. Lida, H. Okazawa, K. Hayashida, N. Tsuyuguchi, K. Ishii, Y. Kuwabra, and M. Senda, “Database of normal human cerebral blood fow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labeled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan”, Eur. J. Nucl. Med. Mol. I. 31, 635-643 (2004).
  • [32] H. Ito, M. Ibaraki, I. Kanno, H. Fukuda, and S. Miura, “Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography”, J. Cereb. Blood F. Met. 25, 852-857 (2005).
  • [33] T.W. Wilson, J.K. Shoemaker, R. Kozak, T.Y. Lee, and A.W. Gelb, “Reflex-mediated reduction in human cerebral blood volume”, J. Cereb. Blood F. Met. 25, 136-143 (2005).
  • [34] S.T. Francis, J.A. Pears, S. Butterworth, R.W. Bowtell, and P.A. Gowland, “Measuring the change in CBV upon cortical activation with high temporal resolution using looklocker EPI and Gd-DTPA”, Magn. Reson. Med. 50, 483-492 (2003).
  • [35] A.S. Prahl, M. Keijzer, S.L. Jacques, and A.J. Welch, “A Monte Carlo Model of light propagation in tissue”, SPIE Institute Series IS5, 102-111 (1989).
  • [36] P. Vander Zee, M. Cope, S.R. Arridge, M. Essenpreis, L.A. Potter, J. Edwards, A.D. Wyatt, S.C. McCormick, S.C. Roth, and E.O. Reynolds, “Experimentally measured optical path lengths for the adult head, calf and forearm and the head of the newborn infant as a function of interoptode spacing”, Adv. Exp. Med. Biol. 316, 143-153 (1992).
  • [37] P. Vander Zee, M. Essenpreis, and D.T. Delpy, “Optical properties of brain tissue”, Proc. SPIE 1888, 454-456 (1993).
  • [38] K.L. Leenders, D. Perani, A.A. Lammertsma, J.D. Heather, P. Buckingham, M.J.R. Healy, J.M. Gibbs, R.J.S. Wise, J. Hatazawa, S. Herold, R.P. Beaney, D.J. Brooks, T. Spinks, C. Rodes, R.S.J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age”, Brain 113, 27-47 (1990).
  • [39] X. Xu, P. Tikuisis, and G. Giesbrecht, “A mathematical model for human brain cooling during cold-water neardrowning”, J. Appl. Physiol. 86, 265-272 (1999).
  • [40] L. Zhu and C. Diao, “Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury”, Med. Biol. Eng. Comput. 39, 681-687 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0017-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.