PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling metamaterial transmission lines: a review and recent developments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review paper is devoted to the discussion and comparison of the lumped element equivalent circuit models of the different types of metamaterial transmission lines that have been proposed so far, namely the CL-loaded lines, and those lines based on the resonant type approach. The latter category comprises both artificial lines loaded with split ring resonators (SRRs), or related topologies, and metamaterial transmission lines based on complementary split ring resonators (CSRRs). It will be the main aim of this paper to clearly justify the circuit elements of the models (and link such elements to the line physics and topology), to compare the different lines to the light of these models, and to point out the advantages and drawbacks of the different metamaterial transmission lines. As long as metamaterial transmission lines are exhaustively used for the design of compact microwave and millimeter wave components with improved performance and/or based on new functionalities, and their synthesis is based on the lumped element equivalent circuits, this paper is of actual interest for RF/microwave engineers and in general to those readers involved in metamaterial research and applications.
Twórcy
autor
autor
autor
autor
  • CIMITEC, Departament d’Enginyeria Electrnica, Universitat Autnoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
Bibliografia
  • 1. A.K. Iyer and G.V. Eleftheriades, “Negative refractive index metamaterials supporting 2-D waves”, Proc. IEEE-MTT Int. Microwave Symp., Seattle, Vol. 2, 412-415 (2002).
  • 2. A.A. Oliner, “A periodic-structure negative-refractive-index medium without resonant elements”, URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio, 41 (2002).
  • 3. C. Caloz and T. Itoh, “Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line”, Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio, Vol. 2, 412-415 (2002).
  • 4. V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ”, Sov. Phys. Uspekhi 10, 509-514 (1968).
  • 5. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184-4187 (2000).
  • 6. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE T. Microw. Theory 47, 2075-2084 (1999).
  • 7. R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional isotropic left handed metamaterial”, Appl. Phys. Lett. 78, 489-491 (2001).
  • 8. G.V. Eleftheriades, O. Siddiqui, and A. Iyer, “Transmission line models for negative refractive index media and associated implementations without excess resonators”, IEEE Microw. Wirel. Co. 13, 53-55 (2003).
  • 9. A. Grbic and G.V. Eleftheriades, “Experimental verification of backward wave radiation from a negative refractive index metamaterial”, J. Appl. Phys. 92, 5930-5935 (2002).
  • 10. C. Caloz and T. Itoh, “Transmission line approach of left handed structures and microstrip realization of a low-loss broadband LH filter”, IEEE. T. Antenn. Propag. 52, (2004).
  • 11. C. Caloz and T. Itoh, “Novel microwave devices and structures based on the transmission line approach of metamaterials”, Proc. IEEE-MTT Int. Microwave Symp., Philadelphia, Vol. 1, 195-198 (2003).
  • 12. S. Ramo, J.R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, New Jersey, 1994.
  • 13. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New Jersey, 2006.
  • 14. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New Jersey, 2007.
  • 15. F. Martín, F. Falcone, J. Bonache, R. Marqués, and M. Sorolla, “Split ring resonator based left handed coplanar waveguide”, Appl. Phys. Lett. 83, 4652-4654 (2003).
  • 16. F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín, and M. Sorolla, “Effective negative- stop-band microstrip lines based on complementary split ring resonators”, IEEE Microw. Wirel. Co. 14, 280–282 (2004).
  • 17. F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials”, Phys. Rev. Lett. 93, 197401 (2004).
  • 18. I. Gil, J. Bonache, J. García-García F. Falcone, and F. Martín, “Metamaterials in Microstrip Technology for Filter Applications”, Proc. of the APS-URSI, Washington, 2005.
  • 19. J.D. Baena, J. Bonache, F. Martín, R. Marqués, F. Falcone, T. Lopetegi, M.A.G. Laso, J. García, I. Gil, and M. Sorolla, “Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines”, IEEE T. Microw. Theory 53, 1451-1461 (2005).
  • 20. J. Bonache, M. Gil, I. Gil, J. Garcia-García, and F. Martín, “On the electrical characteristics of complementary metamaterial resonators”, IEEE Microw. Wirel. Co. 16, 543-545 (2006).
  • 21. F. Aznar, M. Gil, J. Bonache, and F. Martín, “Revising the equivalent circuit models of resonant-type metamaterial transmission lines”, IEEE MTT-S Int. Microwave Symp., Atlanta, June 2008, accepted.
  • 22. J. Bonache, M. Gil, O. García-Abad, and F. Martín, “Parametric analysis of microstrip lines loaded with complementary split ring resonators”, Microw. Opt. Techn. Let., accepted.
  • 23. F. Aznar, J. Bonache, and F. Martín, “An improved circuit model for left handed lines loaded with split ring resonators”, Appl. Phys. Lett. 92, 043512 (2008).
  • 24. L. Roglá, J. Carbonell, and V.E. Boria, “Study of equivalent circuits for open-ring and split-ring resonators in coplanar waveguide technology”, IET Microw. Antennas Propag. 1, 170 (2007).
  • 25. M. Pozar, Microwave Engineering, Addison Wesley, New York, 1990.
  • 26. W.J. Getsinger, “Circuit duals on planar transmission media”, Proc. Microwave Symp. Digest, MTT-S Int., Vol. 83, No. 1, 154-156 (1983).
  • 27. M. Gil, J. Bonache, J. Selga, J. García-García, and F. Martín, “Broadband resonant type metamaterial transmission lines”, IEEE Microw. Wirel. Co. 17, 97-99 (2007).
  • 28. M. Gil, J. Bonache, J. García-García, J. Martel, and F. Martín, “Composite right/left handed (CRLH) metamaterial transmission lines based on complementary split rings resonators (CSRRs) and their applications to very wide band and compact filter design”, IEEE T. Microw. Theory 55, 1296-1304 (2007).
  • 29. G. Sisó, J. Bonache, M. Gil, and F. Martín, “Application of resonant-type metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions”, Microw. Opt. Techn. Let. 50, 127-134 (2008).
  • 30. G. Sisó, M. Gil, J. Bonache, and F. Martín, “Application of metamaterial transmission lines to the design of quadrature phase shifters”, Electron. Lett. 43, 1098-1100 (2007).
  • 31. J. Bonache, G. Sisó, M. Gil, A. Iniesta, J. García-Rincón, and F. Martín, “Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual band microwave components”, IEEE Microw. Wirel. Co., accepted.
  • 32. I. Gil, J. Bonache, J. García-García, and F. Martín, “Tunable metamaterial transmission lines based on varactor loaded split rings resonators”, IEEE T. Microw. Theory 54, 2665-2674 (2006).
  • 33. I. Gil, X. Rottenberg, W. De Raedt, and F. Martín, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials”, Electron. Lett. 43, 11-53 (2007).
  • 34. A. Vélez, J. Bonache, and F. Martín, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines”, IEEE Microw. Wirel. Co. 18, 28-30 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0013-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.