PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Defects in quantum dots of IIB-VI semiconductors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review discusses the properties of structural defects in quantum dots of IIB-VI semiconductors. A great part of this knowledge has been developed in the last years and combined with the improvement in passivation technologies has contributed significantly to the nanotechnology. In this review we introduced the main characterization methods which are used for the study of defects in the nanoform of semiconductors, presented a short description of how native defects can influence the emission spectra, underlined the restrictions which the Auger and deep-level defect recombination imposes on the excitonic emission. We also highlighted the importance of the defect passivation associated with efficiency and photostability of devices.
Twórcy
autor
autor
  • Institute of Semiconductor Physics, Pr. Nauki 41, 03028 Kiev, Ukraine
Bibliografia
  • 1. Physics and Chemistry of II-VI Compounds, p. 317, edited by M. Aven and J.S. Prener, North Holland Pub. Co., Amsterdam, 1967.
  • 2. I. Hernandez-Calderon, II-VI Semiconductor Materials and Their Applications, edited by M.C. Tamargo Taylor & Franics, New York, 2002.
  • 3. J.I. Pankove, Optical Processes in Semiconductors, p. 413, Dover, New York, 1971.
  • 4. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, “Cadmium zinc telluride and its use as a nuclear radiation detector material”, Mater. Sci. Eng. R32, 103–189 (2001).
  • 5. Al.L. Efros and A.L. Efros, “Interband absorption of light in a semiconductor sphere”, Fiz. Tekh. Poluprovodn. 16, 1209-1214 (1982); Sov. Phys. Semicond. 16, 772–775 (1982).
  • 6. L.E. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites”, J. Chem. Phys. 79, 5566–5571 (1983).
  • 7. A.P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots”, Science 271 933-937 (1996).
  • 8. G.D. Watkins, “Intrinsic defects in II-VI semiconductors”, J. Cryst. Growth 159, 338 (1996).
  • 9. G.F. Neumark, “Defects in wide band gap II-VI crystals”, Mater. Sci. Eng. R31, 1–46 (1997).
  • 10. U. Woggon, “Optical properties of semiconductor quantum dots”, Springer Tr. Mod. Phys. 136, 1997.
  • 11. H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission”, Phys. Rev. B56, 1496–1508 (1997).
  • 12. P.C. Sercel, A.L. Efros, and M. Rosen, “Intrinsic gap states in semiconductor nanocrystals”, Phys. Rev. Lett. 83, 2394-2397 (1999).
  • 13. E. Lifshitz, I. Dag, I. Litvin, G. Hodes, S. Gorer, R. Reisfeld, M. Zelner, and H. Minti, “Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods”, Chem. Phys. Lett. 288, 188–196 (1998).
  • 14. E. Lifshitz, A. Glozman, I.D. Litvin, and H. Porteanu, “Optically detected magnetic resonance studies of the surface/interface properties of II-VI semiconductor quantum dots”, J. Phys. Chem. B104, 10449–10461 (2000).
  • 15. K. Gokhberg, A. Glozman, E. Lifshitz, T. Maniv, M.C. Schlamp, and P. Alivisatos, “Electron-hole paramagnetic resonance of spherical CdSe nanocrystals”, J. Chem. Phys. 117, 2909–2913 (2002).
  • 16. F. Trojánek, R. Cingolani, D. Cannoletta, D. Mikeš, P. Nemec, E. Uhlirva, J. Rohovec, and P. Malý, “Tailoring of nanocrystal sizes in CdSe films prepared by chemical deposition”, J. Cryst. Growth 209, 695–700 (2000).
  • 17. M.Ya. Valakh, Y.G. Sadofeev, N.O. Korsunska, G.N. Semenova, V.V. Strelchuk, L.V. Borkovska, M.V. Vuychik, and M. Sharibaev, “Deep-level defects in CdSe/ZnSe QDs and giant anti-Stokes photoluminescence”, Semiconductor Physics, Quantum Electronic & Optoelectronics 5, 254–257 (2002).
  • 18. V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, and M. Fiederle, “Deep level defect luminescence in cadmium selenide nano-crystals films”, J. Cryst. Growth 280, 502–508 (2005).
  • 19. V. Babentsov, J. Riegler, J. Schneider, M. Fiederle, and T. Nann, “Excitation dependence of steady-state photoluminescence in CdSe nanocrystal films”, J. Phys. Chem. B10, 15349–15354 (2005).
  • 20. V. Babentsov, “Defects with deep donor and acceptor levels in nanocrystals of CdTe and CdSe”, Semiconductor Physics, Quantum Electronics & Optoelectronics 9, 94–98 (2006).
  • 21. L. Kronik, N. Ashkenasy, M. Leibovitch, E. Fefer, Y. Shapira, S. Gorer, and G. Hodes, “Surface states and photovoltaic effects in CdSe quantum dot films”, J. Electrochem. Soc. 145, 1748–1755 (1998).
  • 22. B. Alperson, I. Rubinstein, and G. Hodes, “Identification of surface states on individual CdSe quantum dots by room-temperature conductance spectroscopy”, Phys. Rev. B63, 0813031 (2001).
  • 23. S.K. Poznyak, N.P. Osipovich, A. Shavel, D.V. Talapin, M. Gao, A. Eychmuller, and N. Gaponik, “Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution”, J. Phys. Chem. B109, 1094-1100 (2005).
  • 24. E. Kuçur, W. Bulcking, R. Giernoth, and T. Nann, “Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry”, J. Chem. Phys. 119, 2333-2337 (2003).
  • 25. E. Kuçur, W. Bulcking, R. Giernoth, and T. Nann, “Determination of defect states in semiconductor nanocrystals by cyclic voltammetry”, J. Phys. Chem. B109, 20355-20360 (2005).
  • 26. P. Swaminathan, V.N. Antonov, J.A.N.T. Soares, J.S. Palmer, and J.H. Weaver, “Cd-based II-VI semiconductor nanostructures produced by buffer-layer-assisted growth: Structural evolution and photoluminescence”, Phys. Rev. B73, 1254301 (2006).
  • 27. U. Woggon, E. Herz, O. Scho1ps, M.V. Artemyev, C. Arens, N. Rousseau, D. Schikora, K. Lischka, D. Litvinov, and D. Gerthsen, “Hybrid epitaxial-colloidal semiconductor nanostructures”, Nano Letters 5, 485-490 (2005).
  • 28. V.N. Antonov, J.A.N.T. Soares, J.S. Palmer, J.H. Weaver, and P. Swaminathan, “Photoluminescence of CdSe quantum dots and rods from buffer-layer-assisted growth”, Appl. Phys. Lett. 88, 1219061 (2006).
  • 29. A.D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems”, Adv. Phys. 51, 799-890 (2002).
  • 30. Semiconductor Nanocrystals: from Basic Principles to Applications, p. 290, edited by A.L. Efros, D.J. Lockwood, and L. Tsybeskov, Kluwer Academic, New York, 2003.
  • 31. T. Rajh, O.I. Micic, and A.J. Nozik, “Synthesis and characterization of colloidal CdTe quantum dots”, J. Phys. Chem. 97, 11999-12003 (1993).
  • 32. F. Wu, J.W. Lewis, D.S. Kliger, and J.Z. Zhang, “Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles”, J. Chem. Phys. 118, 12-16 (2003).
  • 33. D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, and U. Banin, “Size dependent tunneling and optical spectroscopy of CdSe quantum rods”, Phys. Rev. Lett. 89, 0868011 (2002).
  • 34. T.S. Jeong, P.Y. Yu, and T.S. Kim, “Temperature dependence of the free excitons in a CdS single crystal”, J. Korean Phys. Soc. 36, 102-105 (2000).
  • 35. L.E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, J. Chem. Phys. 80, 4403-4409 (1984).
  • 36. C.F. Lo and R. Sollie, “Mass dependence of ground-state properties of wannier exciton in a quantum dot”, Solid State Commun. 79, 775-778 (1991).
  • 37. S.I. Pokutnyi,” Theory of size quantization of exciton in quasi-zero-dimensional semiconductor structures”, Phys. Status Solidi B173, 607–613 (1992), S.I. Pokutnyi, “Exciton states in semiconductor spherical nanostructures”, 39, 1066-1070 (2005).
  • 38. C.F. Lo and R. Sollie, “The mass dependence of the ground-state properties of the Wannier exciton in a quantum box”, J. Phys. Condens. Mat. 5, 8587-8594 (1993).
  • 39. G.T. Einevoll, “Confinement of excitons in quantum dots”, Phys. Rev. B45, 3410-3417 (1992).
  • 40. S.A. Safwan, M.H. Hekmat, and N.A. El-Meshad, “Exciton state in a quantum dot”, Fizika A (Zagreb) 16, 1-10 (2007).
  • 41. A. Aharoni, A. Eichhofer, D. Fenske, and U. Banin, “Optical spectroscopy of cadmium-chalcogenide clusters of the type [Cd10E4(E'Ph)12(PR3)4], E = Te, Se; E'=Se,S)”, Opt. Mat. 24, 43-49 (2003).
  • 42. V.N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, “Molecular limit of a bulk semiconductor: size dependence of the "band gap" in CdSe cluster molecules”, J. Am. Chem. Soc. 122, 2673-2674 (2000).
  • 43. E.X. Ping and V.L. Dalal, “Electron-hole quantum confined states affected by point charge in semiconductor crystallites”, Solid State Commun. 82, 749-753 (1992).
  • 44. N. Chestnoy, T.D. Harris, R. Hull, and L.E. Brus, “Luminescence and photophsics of CdS semiconductor cluster: The nature of the emitting electronic state”, J. Phys. Chem. 90, 3393-3399 (1986).
  • 45. M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald, and L.E. Brus, “Electronic structure and photoexited-carrier dynamics in nanometer-size CdSe clusters”, Phys. Rev. Lett. 65, 1623–1626 (1990).
  • 46. V.A. Fonoberov, K.A. Alim, and A.A. Balandin, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals”, Phys. Rev. B73, 1653171 (2006).
  • 47. H. Fu and A. Zunger, “InP quantum dots: Electronic structure, surface effects, and the redshifted emission”, Phys. Rev. B56, 1496–1508 (1997).
  • 48. L.W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots”, Phys. Rev. B53, 9579-9582 (1996).
  • 49. M. Califano, A. Franceschetti, and A. Zunger, “Temperature-dependence of excitonic radiative decay in CdSe quantum dots: The role of surface hole traps”, Nano Lett. 5, 2360-2364 (2005).
  • 50. P.C. Sercel, A.L. Efros, and M. Rosen, “Intrinsic gap states in semiconductor nanocrystals”, Phys. Rev. Lett. 83, 2394-2397 (1999).
  • 51. K.E. Andersen, C.Y. Fong, and W.E. Pickett, “Quantum confinement in CdSe nanocrystallites”, J. Non. Cryst. Solids 299/302, 1105-1110 (2002).
  • 52. A. Konkar, S. Lu, A. Madhukar, S.M. Hughes, and A.P. Alivisatos, “Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: high resolution transmission electron microscopy”, Nano Lett. 5, 969-973 (2005).
  • 53. R. Schneider, H. Kirmse, I. Hähnert, and W. Neumann, “High-resolution analytical transmission electron microscopy of semiconductor quantum structures”, Fresenius' J. Anal. Chem. 365, 217-220 (1999).
  • 54. H. Borchert, D.V. Talapin, C. McGinley, S. Adam, A. Lobo, A.R.B. de Castro, T. Möller, and H. Weller, “High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals”, The J. Chem. Phys. 119, 1800-1807 (2003).
  • 55. P. K. Hansma and J. Tersoff, “Scanning tunneling microscopy”, J. Appl. Phys. 61, R1-R24 (1987).
  • 56. S. Kremmer, C. Teichert, E. Pischler, H. Gold, F. Kuchar, and M. Schatzmayr, “Characterization of silicon gate oxides by conducting atomic-force microscopy”, Surf. Interf. Anal. 33, 168-172 (2002).
  • 57. J. Shneider, II-VI Semiconductor Compounds, p. 40, edited by D.G. Thomas, Benjamin, New York, 1967.
  • 58. Point Defects in Crystals, p. 252, edited by R.K. Watts, Wiley, New York, 1977.
  • 59. J.J. Davies, “ODMR studies of recombination emission in II–VI compounds”, J. Cryst. Growth 72, 317-325 (1985).
  • 60. B.C. Cavenett, “Optically detected magnetic resonance (ODMR) investigations of recombination processes in semiconductors”, Adv. Phys. 30, 475-538 (1981).
  • 61. D.V. Lang, “Deep-level transient spectroscopy: a new method to characterize traps in semiconductors”, J. Appl. Phys. 45, 3023-3032 (1974).
  • 62. R. Magno, Brian R. Bennett, and E.R. Glaser, “Deep level transient capacitance measurements of GaSb self-assembled quantum dots”, J. Appl. Phys. 88, 5843-5849 (2000).
  • 63. C.A. Leatherdale, W.K. Woo, F.V. Mikulec, and M.G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots”, J. Phys. Chem. B106, 7619-7622 (2002).
  • 64. W. Hoheisel, V.L. Colvin, C.S. Johnson, and A.P. Alivisatos, “Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals”, J. Chem. Phys. 101, 8455-8460 (1994).
  • 65. Y. Gu, I.L. Kuskovsky, J. Fung, G.F. Neumark, X. Zhou, S.P. Guo, and M.C. Tamargo, “Optical investigation of CdSe/Zn(Be)Se quantum dot structures: size and Cd composition”, Phys. Status Solidi (c) 1, 779-782 (2004).
  • 66. M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A.I. Ekimov, “Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect”, Phys. Rev. B53, 1336-1342 (1996).
  • 67. P. Guyot-Sionnest, M. Shim, C. Matranga, and M. Hines, “Intraband relaxation in CdSe quantum dots”, Phys. Rev. B60, R2181-R2184 (1999).
  • 68. C. Wang, M. Shim, and P. Guyot-Sionnest, “Electrochromic nanocrystal quantum dots”, Science 291, 2390-2392 (2001).
  • 69. S. Kim, B. Fisher, H.J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures”, J. Am. Chem. Soc. 125, 11466-11467 (2003).
  • 70. V.I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals”, J. Phys. Chem. B104, 6112-6123 (2000).
  • 71. A.A. Mikhailovsky, A.V. Malko, J.A. Hollingsworth, M.G. Bawendi, and V.I. Klimov, “Multiparticle interactions and stimulated emission in chemically synthesized quantum dots”, Appl. Phys. Lett. 80, 2380-2382 (2002).
  • 72. M. Achermann, J.A. Hollingsworth, and V.I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals”, Phys. Rev. B68, 2453021 (2003).
  • 73. I.D. Litvin, H. Porteanu, E. Lifshitz, and A.A. Lipovskii, “Optically detected magnetic resonance studies of CdS nanoparticles grown in phosphate glass”, J. Cryst. Growth 198/199, 313-315 (1999).
  • 74. C.A. Leatherdale, C.R. Kagan, N.Y. Morgan, S.A. Empedocles, M.A. Kastner, and M.G. Bawendi, “Photoconductivity in CdSe quantum dot solids”, Phys. Rev. B62, 2669-2680 (2000).
  • 75. G.F. Neumark, “Defects in wide band gap II-VI crystals”, Mater. Sci. Eng. R21, 1-46 (1997).
  • 76. M. Grundmann and D. Bimberg, “Theory of random population for quantum dots”, Phys. Rev. B55, 9740-9745 (1998).
  • 77. S.A. Crooker, T. Barrick, J.A. Hollingsworth, and V.I. Klimov, “Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime”, Appl. Phys. Lett. 82, 2793-2795 (2003).
  • 78. V.I. Klimov and D.W. McBranch, “Auger-process-induced charge separation in semiconductor nanocrystals”, Phys. Rev. B55, 13173-13179 (1997).
  • 79. C. Burda, S. Link, M.B. Mohamed, and M.A. El-Sayed, “The pump power dependence of the femtosecond relaxation of CdSe nanoparticles observed in the spectral range from visible to infrared”, J. Chem. Phys. 116, 3828-3833 (2002).
  • 80. J.M. Caruge, Y. Chan, V. Sundar, H.J. Eisler, and M.G. Bawendi, “Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states in CdSe quantum dots”, Phys. Rev. B70, 0853161 (2004).
  • 81. M. Kuno, D.P. Fromm, S.T. Johnson, A. Gallagher, and D.J. Nesbitt, “Modelling distributed kinetics in isolated semiconductor quantum dots”, Phys. Rev. B67, 1253041 (2003).
  • 82. X. Brokmann, J.P. Hermier, G. Messin, P. Desbiolles, J.P. Bouchaud, and M. Dahan, “Statistical aging and nonergodicity in the fluorescence of single nanocrystals”, Phys. Rev. Lett. 90, 1206011 (2003).
  • 83. I. Chung, M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots”, Phys. Rev. B70, 1653041 (2004).
  • 84. B.C. Hess, I.G. Okhrimenko, R.C. Davis, B.C. Stevens, Q. Schulzke, K.C. Wright, C.D. Bass, C.D. Evans, and S.L. Summers, “Surface transformation and photoinduced recovery in CdSe nanocrystals”, Phys. Rev. Lett. 86, 3132-3135 (2001).
  • 85. D.F. Underwood, T. Kippeny, and S.J. Rosental, “Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy”, J. Phys. Chem. B105, 436-443 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0013-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.