PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anti-Stokes luminescence in heavily doped semiconductors as a mechanism of laser cooling

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The anti-Stokes luminescence is a mechanism of the optical refrigeration in semiconductor light sources. The heavily doped semiconductors are considered as a material for the laser cooling. The limitation of this mechanism appears to be connected with a transition from the non-degenerate to degenerate occupation. This transition occurs at higher pumping rate (along with the transition to the optical gain and lasing) and at lower temperature. Thus, the limit for the laser cooling can be indicated. The minimal obtainable temperature is about 60–120 K depending on the doping level. The laser cooling of a semiconductor is impeded by the difficulty of extracting the spontaneous emission from a radiating body that is characterized by large angle of the total internal reflection.
Twórcy
  • Centre for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106, USA, eliseev@chtm.unm.edu
Bibliografia
  • 1. M. Sheik-Bahae and R.I. Epstein, “Can laser light cool semiconductors?”, Phys. Rev. Lett. 92, 247403 (2004).
  • 2. S.V. Petrushkin and V.V. Samartsev, Laser Cooling of Solids, Fizmatgiz, Moscow, 2005. (in Russian)
  • 3. X.L. Ruan and M. Kaviany, “Advances in laser cooling of solids”, J. Heat Transf. 129, 3–10 (2007).
  • 4. K. Lehovec, C.A. Accardo, and E. Jamgochian, “Light emission produced by current injected into a green silicon-carbide crystal”, Phys. Rev. 89, 20–24 (1953).
  • 5. G.C. Dousmanis, C.W. Mueller, H. Nelson, and K.G. Petziger, “Evidence of refrigerating action by means of photon emission in semiconductor diodes”, Phys. Rev. 133, A316–A318 (1964).
  • 6. J. Pankove, Optical Processes in Semiconductors, Ch. 8, Sect. 2.8., Prentice-Hall, Englewood Cliffs, NJ, 1971.
  • 7. P. Pringsheim, “Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung”, Z. Phys. 57, 739 (1929).
  • 8. L. Landau, “About thermodynamics of photoluminescence”, J. Phys. 10, 503–505 (1946).
  • 9. J. Tauc, “The share of thermal energy taken from the surroundings in the electroluminescent energy radiated from a p-n junction”, Czech. J. Phys. 7, 275 (1957).
  • 10. M. A. Weinstein, “Thermodynamic limitation on the conversion of heat into light”, J. Opt. Soc. Am. 50, 597 (1960).
  • 11. P.T. Landsberg and D.A. Evans, “Thermodynamic limits of some light-producting devices”, Phys. Rev. 166, 242–246 (1968).
  • 12. W. Nakwaski, “Optical refrigeration in light-emitting diodes”, Electron Technol. 13, 61–76 (1982).
  • 13. A.N. Oraevsky, “Cooling of semiconductors by laser radiation”, J. Russ. Laser Res. 17, 471 (1996).
  • 14. L.A. Rivlin and A.A. Zadernovsky, “Laser cooling of semiconductors”, Opt. Commun. 139, 219 (1997).
  • 15. C.E. Mungan, “Radiation thermodynamics with applications to lasing and fluorescent cooling”, Am. J. Phys. 73, 315–322 (2005).
  • 16. G.G. Stokes, “On the change of refrangibility of light”, Philos. Tr. R. Soc. 142, 463-562 (1852); 143 III, 385 (1853).
  • 17. S.I. Vavilov, “Quantitative measurements of the yield in concentrated dye solutions in dependence on the wavelength in a wide spectral range from 250 to 550 nm”, Z. Phys. 32, 236 (1925).
  • 18. R.J. Keyes and T.M. Quist, “Recombination radiation emitted by gallium arsenide”, Proc. IRE 50, 1822-1823 (1962).
  • 19. Y.N. Nikolaev, “Concerning the maximum energy yield of injection luminescence”, JETP Lett. 4, 319-320 (1966). JETP Lett. 4, 319-320 (1966).
  • 20. H. Gauck, T.H. Gfoerer, M.J. Renn, E.A. Cornell, and K.A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure”, Appl. Phys. A64, 143–147 (1997).
  • 21. E. Finkeissen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling a semiconductor by luminescence upconversion”, Appl. Phys. Lett. 75, 1258–1260 (1999).
  • 22. P. Gerthsen and E. Kauer, “The luminescence diode acting as a heat pump”, Phys. Rev. 17, 255 (1965).
  • 23. P.T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies”, J. Appl. Phys. 51, R1–R20 (1980).
  • 24. C.E. Mungan, “Thermodynamics of radiation balanced lasing”, J. Opt. Soc. Am. B20, 1075–1082 (2003).
  • 25. K.P. Pipe and R.L. Ram, “Bias-dependent Peltier coefficient and internal cooling in bipolar devices”, Phys. Rev. B66, 125316–125327 (2002).
  • 26. R.I. Epstein, M. Buckwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid”, Nature 377, 500–503 (1995).
  • 27. T.R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature”, Optics Lett. 24, 1041–1043 (1999).
  • 28. J. Thiede, J. Distel, S. Greenfield, and R. Epstein, “Cooling to 208 K by optical refrigeration”, Appl. Phys. Lett. 86, 154107 (2005).
  • 29. P.G. Eliseev, A.I. Krasilnikov, M.A. Manko, and I.Z. Pinsker, “The band-filling model for injection luminescence at higher temperature”, Phys. Status Solidi 23, 587–593 (1967).
  • 30. P.G. Eliseev and M.A. Manko, “The energy spectrum of the heavily doped gallium arsenide from the data of the electroluminescent p-n junction”, Proc. 9th Int. Conf. Phys. Semicond., 113–117, Nauka, Leningrad, 1968.
  • 31. P.G. Eliseev and M.A. Manko, “About the nature of the thermal activated current and emission in heavily-doped p-n junctions”, Fiz. Techn. Poluprov. 2, 3–10 (1968).
  • 32. P.G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN based light sources”, Appl. Phys. Lett. 71, 569–571 (1997)
  • 33. P.G. Eliseev, “The red 2/kT spectral shift in partially disordered semiconductors”, J. Appl. Phys. 93, 5404-5415 (2003).
  • 34. P.A. Askarov, A.G. Dmitriev, and B.V. Tsarenkov, “Radiative recombination in GaAs:Si p-n structures”, Sov. Phys. Semicond. 11, 1075–1077 (1977).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAK-0013-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.