Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Organic solar cells
Języki publikacji
Abstrakty
Badania organicznych ogniw fotowoltaicznych mają już 30-letnią historię, a ich intensywność w ostatnich latach doprowadziła do znaczącej poprawy wydajności konwersji mocy i wykazała możliwość wielu praktycznych zastosowań. Materiałami wykorzystywanymi w organicznej fotowoltaice są polimery z wiązaniami sprzężonymi i półprzewodniki molekularne o małym ciężarze cząsteczkowym. Najczęściej badane struktury to: heterozłącza planarne, objętościowe, multizłącza, struktury p-i-n, ogniwa hybrydowe, a szczególnie ogniwa barwnikowe. Wydajność konwersji mocy ogniw molekularnych i polimerowych osiągnęła wartość 6%, a barwnikowych 11%. Ogniwa organiczne mogą być tanie, lekkie, giętkie, przezroczyste i o dużej powierzchni.
Research on organic photovoltaic devices has developed during the past 30 years. Especially in the last decade, interest in advancement of these devices increased significantly, which resulted in improvement of the power conversion efficiency and many practical applications. Organic photovoltaic materials of great importance include conjugated polymers and small molecular weight materials. These materials are used in such photovoltaic systems as bilayer heterojunction devices, bulk heterojunction devices, p-i-n structures, dyesensitized solar cells and hybrid organic-inorganic devices. Nowadays, the reported values of the power conversion efficiency of organic solar cells reach about 11% and they are still smaller than those obtained for solar cells made from inorganic materials. However, the perspective of cheap production of organic solar cells with special properties (e. g. thin, light weight, flexible, semitransparent cells) drives their development further in a dynamic way.
Wydawca
Rocznik
Tom
Strony
77--82
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
autor
- Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej
Bibliografia
- [1] Tang C. W.: Two-layer organic photovoltaic celi; Appl. Phys. Lett., 48, 1986, 183.
- [2] Chamberlain G. A.: Organic solar cells: a review; Solar Cells, 8, 1983,47.
- [3] Xue J. i in.: Asymmetric tandem organie photovoltaic cells with hybrid planar-mixed molecular heterojunetions; Appl. Phys. Lett., 85, 2004, 5757.
- [4] Kim J. Y. i in.: Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing; Science, 317, 2007, 222.
- [5] Gratzel M.: Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells; Inorg. Chem., 44, 2005, 6841.
- [6] Brabec Ch. J.: Organic photovoltaics: technology and market; Solar Energy Mat. & Solar Cells, 83, 2004, 273.
- [7] Sun S.-S., Sariciftci N. S. (Ed.): Organic photovoltaics; Taylor & Francis, Boca Raton, 2005.
- [8] Hoppe H., Sariciftci N. S.: Organic Solar Cells: An overview; J. Mater. Res., 19, 2004, 1924.
- [9] Pope M., Swenberg C. E.: Electronic processes in organie erystals and polymers; Oxford Univ. Press, 1999.
- [10] Gregg B. A., Hanna M. C: Comparing organie to inorganic photovoltaic cells: Theory, experiment and simulation; J. Appl. Phys. 93, 2003, 3605.
- [11] Godlewski J.: Currents and photocurrents in organie materials determined by the interface phenomena; Adv. Coli. Interface Sci., 116,2005,227.
- [12] Wohrle D., Meisser D.: Organic Solar Cells; Adv.Mater. 3, 1991, 129.
- [13] Nunzi J.-M.: Organic photovoltaic materials and devices; C. R. Physique, 3, 2002, 523.
- [14] Peumans P, Yakimov A., Forrest S. R.: Smali Molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys., 93, 2003, 3693.
- [15] Persson N.-K., Inganas O.: Simulations of Optical Process in Organic Photovoltaic Devices; [7], Ch.5, 107.
- [16] Peumans P., Forrest S. R.: Very-high-efficiency double-heterostructure copper phthalocyanine|C60 photovoltaic cells; Appl. Phys. Lett., 79, 2001, 126.
- [17] Xue J., Uchida S., Rand B. P., Forrest S. R.: 4.2% efficient organic photovoltaic cells with Iow series resistances; Appl. Phys. Lett., 84, 2004, 3013.
- [18] Lane P. A., Kafafi H.: Solid-State Organie Photovoltaics: A Review of Molecular and Polymeric Devices;[7], Ch.4, 49.
- [19] Hiramoto M., Fujiwara H., Yokoyama M.: p-i-n like behavior in three-layered organie solar cells having a co-deposited interlayer of pigments; J. Appl. Phys., 72, 1992, 3781.
- [20] Hiramoto M.: Organic Solar Cells Incorporating a p-i-n junetion and p-n homojunetion; [7], Ch.10, 239.
- [21] Maenning B. i in.: Organic p-i-n solar cells; Appl. Phys. A, 79, 2004, 1.
- [22] Drechsel J. i in.: Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers; Appl. Phys. Lett., 86, 2005, 244102.
- [23] Kippelen B. i in.: Liquid-Crystal Approaches to Organic Photovoltaics; [7], Ch. 11,271.
- [24] Jung J. i in.: Photogeneration and photovoltaic effect in blendsof derivatives of hexabenzocoronene and perylene; Synth. Metals, 155,2005,150.
- [25] Spanggaard H., Krebs F. C: Abrief history of the development of organic and polymeric photovoltaics; Solar Energy Mat. & Solar Cells, 83, 2004, 125.
- [26] Vlachopoulos N. i in.: Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films; J. Am. Chem. Soc, 110, 1988, 1216.
- [27] O'Regan B., Gratzel M.: A Iow-cost, high efficiency solar cells based on dye-sensitized colloidal TiO2 films; Naturę, 353, 1991,737.
- [28] Chiba Y. i in.: Dye-Sensitized Solar Cells with Conversion Efficient of 11.1%, Jap. J. Appl. Phys., 45, 2006, L638.
- [29] Arakawa H., Hara K.: Dye-sensitized Solar Cells; Luque A., Hegedus S.(Ed): Handbook of photovoltaic science and engineering; Wiley, 2003:Ch. 15,663.
- [30] Kriiger J. i in.: lmprovement of the photovoltaic performance of solid-state dyesensitized device by silver complexation of the sensitizer cis-bis (4,4'-dicarboxy-2,2' bipyridine) - bis (isothiocy-anato) ruthenium (II); Appl. Phys. Lett., 81, 2002, 367.
- [31] Huynh W. V., Dittmer J. J., Alivisatos A. P: Hybrid Nanorod - Polymer Solar Cells;. Science, 295, 2002, 2425.
- [32] Reyes-Reyes M., Kim K. Carrol D. L.: High-efficiency photovoltaic devices based on annealed poły (3 - hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C6, blends; Appl. Phys. Lett., 87, 2005, 083506.
- [33] Nazeerudolin M. K. I in.: Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2 - Based Solar Cells; J. Am. Chem. Soc., 123,2001, 1613.
- [34] Bundgaard E., Krebs F.C.: Low band gap polymers for organic photovoltaics; Solar Energy Mat. & Solar Cells; 91, 2007, 954.
- [35] Signerski R.: The photovoltaic effect in a heterojunetion of molybdenyl phthalocyanine and perylene dye; J. Non-Cryst.Solids, 352,2006,4319.
- [36] Koeppe R. i in.: Advanced photon-harvesting concepts for locoenergy gap organic solar cells; Solar Energy Mat. & Solar Cells; 91,2007, 986.
- [37] Scharber M. C. i in.: Design Rules for Donors in Bulk-Heterojunction Solar Cells - Towards 10% Energy - Conversion Efficiency; Adv. Mater., 18, 2006, 789.
- [38] Lungenschmied Ch. i in.: Flexible, long-lived, large - area, organic solar cells; Solar Energy Mat. & Solar Cells, 91, 2007, 379.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAH-0006-0024