PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikrosystemy w pomiarach biochemicznych

Identyfikatory
Warianty tytułu
EN
Microsystems in biochemical measurements
Języki publikacji
PL
Abstrakty
PL
W przeglądowym artykule omówiono miniaturowe bioczujniki i mikrosystemy do pomiarów biochemicznych, w których pełnią one rolę detektorów. Opisując wybrane grupy bioczujników, w których rolę bioreceptorów pełnią rolę enzymy, przeciwciała, fragmenty DNA itd., a do wykonania przetworników podstawowych czułych chemicznie wykorzystano różne zasady działania (elektrochemiczne, optoelek­troniczne, masowe...) i różne technologie, akcent położono na półprzewodnikowe przetworniki elektrochemiczne-potencjometryczne i amperometryczne. Półprzewodnikowe techniki mikromechaniczne stały się podstawą opracowania mikrosystemów analitycznych określanych mianem miniaturowych układów do całościowej analizy chemicznej (žTAS), znanych również jako lab-on-a-chip.
EN
Microsystems and miniaturised biosensors as detectors of these systems for biochemical measurements are reviewed in the paper. Presenting the selected groups of biosensors, with bioreceptors in the form of enzymes, antibodies, DNA segments etc., for which different principles of operation (electrochemical, optoelectronic, mass...) and technologies were applied for manufacturing of basic chemical transducer, the semiconductor electrochemical transducers (potentiometric, amperometric) were distinguished. Due to semiconductor, micromechanical technologies, analytical microsystems, named as the micro total analysis systems (žTAS) or lab-on-a-chip were developed. Some examples of such systems are given.
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 6 poz., il., rys., tab.
Twórcy
autor
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej PAN, Warszawa
Bibliografia
  • [1] Torbicz W., Filipczyński L., Maniewski R., Nałęcz M., Stolarski E. (red.): Biopomiary. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2001.
  • [2] Goepel W., Hesse J., Zemel J.N. (Eds.): Sensors. A Comprehensive Survey, Viley-VCH, vol. 2/3. W. Goepel, T.A. Jones, M. Kleitz, I. Lundstrom, T. Seyiama (Eds.). Chemical and Biochemical Sensors,1991.
  • [3] Eggins B.R.: Chemical Sensors and Biosensors. Analytical Techniques in the Sciences, Viley-VCH, 2002.
  • [4] Gizeli E., Lowe Ch.R.: Biomolecular Sensors. CRC Press, 2002.
  • [5] Marks R.S., Lowe Ch.R., Cullen D.C., Weetall H.H., Karube I. (Eds.): Handbook of Biosensors and Biochips. Viley-VCH, 2007.
  • [6] Kumar Ch.S.S.R. (Ed.): Nanomaterials for Biosensors. Viley-VCH, 2006.
  • [7] Van Emon J.M.: Immunoassay and Other Bioanalytical Techniques. CRC Press, 2006.
  • [8] Dziuban J.A.: Technologia i zastosowanie mikromechanicznych struktur krzemowych i krzemowo szklanych w technice mikrosystemów. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2002.
  • [9] Pijanowska D.G.: Wybrane problemy miniaturowych układów do analiz biochemicznych. Prace IBIB PAN, Warszawa 2006.
  • [10] Malic L., Kirk A.G.: Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy. Sensors and Actuators, vol. 135, 2007, pp. 515-524.
  • [11] Golonka L.: Zastosowanie ceramiki LTCC w mikroelektronice. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2001.
  • [12] Chen S.C., Cheng C.H., Lin Y.C.: Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application. Sensors and Actuators, vol. 135, 2007, pp. 1-9.
  • [13] Wu M.H., Urban J.P.G., Cui Z., Cui Z.F.: Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomedical Microdevices, vol. 8, 2006, pp. 331-340.
  • [14] Palacio M., Bhushan B., Ferrell N., Hansford D.: Nanomechanical characterization of polymer beam structures for BioMEMS applications. Sensors and Actuators, vol. 132, 2007, pp. 637-650.
  • [15] Samel B., Nock V., Russom A., Griss P., Stemme G.: A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Biomedical Microdevices, vol. 9, 2007, pp. 61-67.
  • [16] Gong H., Ramalingam N., Che L., Chen J., Wang Q., et. al.: Microfluidic handling of PCR solution and DNA amplification on a reaction chamber array biochip. Biomedical Microdevices, vol. 8, 2006, pp. 167-176.
  • [17] Santos N.C., Castanho M.A.R.B.: An overview of the biophysical applications of atomic force microscopy. Biophysical Chemistry, vol. 107, 2004, pp. 133-149.
  • [18] Torbicz W.: Teoria i własności tranzystorów polowych jako czujników biochemicznych. Ossolineum, 1988.
  • [19] Pijanowska D.G.: Analysis of factors determining parameters of ion sensitive field effect transistors as the sensors of biochemical quantities. Prace IBIB, Zeszyt nr 46, Warszawa, 1996.
  • [20] Pijanowska D.G., Torbicz W.: Biosensors for bioanalytical applications. Bulletin of the PAS, Tech. Sciences, vol. 53, no. 3, 2005, pp. 251-260.
  • [21] Dawgul M., Pijanowska D.G., Krzyskow A., Kruk J., Torbicz W.: An influence of polyhema gate layer on properties of chemfets. Sensors, vol. 3, 2003, pp. 146-159.
  • [22] Chung W.Y., Yang C.H., Pijanowska D.G., Grabiec P.B., Torbicz W.: ISFET performance enhancement by using the improved circuit techniques. Sensors and Actuators, vol. B 113, 2006, pp. 555-562.
  • [23] Pijanowska D.G., Sprenkels A.J., Olthuis W., Bergveld P.: A flow-through amperometric sensor for micro analytical systems. Sensors and Actuators, vol. B 91, 2003, pp. 98-102.
  • [24] Qi H., Zhang Ch., Li X.: Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin. Sensors and Actuators, vol. B 114, 2006, pp. 364-370.
  • [25] Anderson H., Jonsson M., Vestling L., Lindberg U., Aastrup T.: Quartz crystal microbalance sensor design. I. Experimental study of sensor response and performance. Sensors and Actuators, vol. B 123, 2007, pp. 27-34.
  • [26] Chang H.-W., Shih J.-Sh.: Surface acoustic wave immunosensors based on immobilized C60-proteins. Sensors and Actuators, vol. B 121, 2007, pp. 522-529.
  • [27] Lim S.-H.Sh., Raorane D., Satyanarayana S., Majumdar A.: Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis. Sensors and Actuators, vol. B 119, 2006, pp. 466-474.
  • [28] Villarroya M., Verd J., Teva J., Abadal G. et. al.: System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sensors and Actuators, vol. A 132, 2006, pp. 154-164.
  • [29] Lee J., King W.P.: Microcantilever hotplates: Design, fabrication, and characterization. Sensors and Actuators, vol. A 136, 2007, pp. 291-298.
  • [30] Powers M.A., Koev S.T., Schleunitz A., Yi H. et al.: A fabrication platform for electrically mediated optically active biofunctionalized sites in BioMEMS. Lab on a Chip, vol. 5, 2005, pp. 583-586.
  • [31] Rahman M.A., Shiddiky M.J.A., Park J.-S., Shim Y.-B.: An impedimetric immunosensor for the label-free detection of bisphenol A. Biosensors and Bioelectronics, vol. 22, 2007, pp. 2464-2470.
  • [32] Chang H.-W., Shih J.-Sh.: Surface acoustic wave immunosensors based on immobilized C60-proteins. Sensors and Actuators, vol. B 121, 2007, pp. 522-529.
  • [33] Messina G.A., De Vito I.E., Raba J.: Screen-printed immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori. Sensors and Actuators, vol. B 128, 2007, pp. 23-30.
  • [34] Bhattacharyya A., Klapperich C.M.: Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomedical Microdevices, vol. 9, 2007, pp. 245-251.
  • [35] Lu Ch.-J., Steinecker W.H., Tian W.-Ch., Oborny M.C. et al.: First-generation of hybrid MEMS gas chromatograph. Lab on a Chip, vol. 5, 2005, pp. 1123-1131.
  • [36] Manz A., Graber N., Widmer H.M.: Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B, vol. 1, no. 3, 1990, pp. 244-248.
  • [37] Guenat O.T., Dufour J.-F., van der Wal P.D., Morf W.E., de Rooij N.F., Koudelka-Hep M.: Microfabrication and characterization of an ion-selective microelectrode array platform. Sensors and Actuators, vol. B 105, 2005, pp. 65-73.
  • [38] Yang J., Chen Q., Zheng X.: Fabrication of a chemosensor array on a microfluidic device by a simple gel-based method. Sensors and Actuators, vol. B 115, 2006, pp. 309-315.
  • [39] Yun Y.H., Bange A., Heineman W.R. et al.: A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding. Sensors and Actuators, vol. B 123, 2007, pp. 177-182.
  • [40] Li B., Santhanam S., Schultz L., Jeffries-EL M. et. al.: Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sensors and Actuators, vol. B 123, 2007, pp. 651-660.
  • [41] Yun Y.H., Bange A., Heineman W.R. et. al.: A nanotube an immunosensor for direct electrochemical detection of antigen-antibody binding. Sensors and Actuators, vol. B 123, 2007, pp. 177-182.
  • [42] Joo B.-Su, Huhb J.-S., Lee D.-D.: Fabrication of polymer SP sensor array to classify chemical warfare agents. Sensors a Actuators, vol. B 121, 2007, pp. 47-53.
  • [43] Madou M.J., Lee L.J., Daunert S., et al.: Design and fat cation of CD-like microfluidic platforms for diagnostics: microfluidic functions. Biomedical Microdevices, vol. 3, 2001, pp. 245-254.
  • [44] Fair R.B.: Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid, vol. 3, 2007, pp. 245-281.
  • [45] Dawgul M., Pijanowska D.G., Jaroszewicz B., Kruk J., Grabiec P., Torbicz W.: Development of a flow-thru system containing a pwell type ion sensitive field effect transistor array for determintion of electrolytes and urea in dialysate. Proc. of EUROCON 2007, Warsaw, Sept. 9-12, 2007, CD ROM: ISBN 1-4244-08113-X, pp. 564-570, www.ieeexplore.
  • [46] Pijanowska D.G., Remiszewska E., Łysko J.M., Jazwinski J., Torbicz W.: Immobilisation of bioreceptors for microreactors. Sensors and Actuators, vol. B 91, 2003, pp. 152-157.
  • [47] Brivio M., Oosterbroek R.E., Verboom W., van den Berg A., Reinhoudt D.N.: Simple chip-based interfaces for on-line monitoring of supramolecular interactions by nano-ESI MS. Lab on a Chip, vol. 5, 2005, pp. 1111-1122.
  • [48] Pijanowska D.G., Remiszewska E., Pederzolli C, Lunelli L., Vendano M., Canteri R., Dudzinski K., Kruk J., Torbicz W.: Surface modification for microreactor fabrication. Sensors, vol. 6, 2006, pp. 370-379.
  • [49] Limbut W., Loyprasert S., Thammakhe Ch. et al.: Microfluidc conductimetric bioreactor. Biosensors and Bioelectronics, vol. 22, 2007, pp. 3064-3071.
  • [50] Ungerstedt U., Hallstroem A.: In vivo microdialysis - a new approach to the analysis of neurotransmitters in the brain. Life Sciences, vol. 41, 1987, pp. 861-864.
  • [51] Zahn J.D., Trebotich D., Liepmann D.: Microdialysis microneedles for continuous medical monitoring. Biomedical Microdevices, vol. 7, 2005, pp. 59-69.
  • [52] Pijanowska D.G., Sprenkels A.J., van der Linden H., Olthuis W., Bergveld P., van den Berg A.: A flow-through potentiometric sensor for an integrated microdialysis system. Sensors and Actuators, vol. B 103, 2004, pp. 350-355.
  • [53] Hsieh Y.-Ch., Zan J.D.: On-chip microdialysis system with flow-through sensing components. Biosensors and Bioelectronics, vol. 22, 2007, pp. 2422-2428.
  • [54] Das S., Das T., Chakraborty S.: Analytical solutions for the rate of DNA hybridizationin a microchannel in the presence of pressure-driven and electroosmotic flows. Sensors and Actuators, vol. B 114, 2006, pp. 957-963.
  • [55] Sun Y., Kwok Y.C., Nguyen N.T.: A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab on a Chip, vol. 7, 2007, pp. 1012-1017.
  • [56] Fu L. M., Lin Ch. H.: A rapid DMA digestion system. Biomedical Microdevices, vol. 9, 2007, pp. 277-286.
  • [57] Popovtzer R., Neufeld T., Ron E., Rishpon J., Shacham-Diamand Y.: Electrochemical detection of biological reactions using a novel nano-bio-chip array. Sensors and Actuators, vol. B 119, 2006, pp. 664-672.
  • [58] Irimia D., Liu S.-Y., Tharp W.G., Samadani A., Toner M., Poznansky M.C.: Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab on a Chip, vol. 6, 2006, pp. 191-198.
  • [59] Iliescu C., Poenar D.P., Carp M., Loe F.C.: A microfluidic device for impedance spectroscopy analysis of biological samples. Sensors and Actuators, vol. B 123, 2007, pp. 168-176.
  • [60] Yang A.S., Hsieh W.H.: Hydrodynamic focusing investigation in a micro-flow cytometer. Biomedical Microdevices, vol. 9, 2007, pp. 113-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-8101-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.