PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HOT infrared photodetectors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present, uncooled thermal detector focal plane arrays are successfully used in staring thermal imagers. However, the performance of thermal detectors is modest, they suffer from slow response and they are not very useful in applications requiring multispectral detection. Infrared (IR) photon detectors are typically operated at cryogenic temperatures to decrease the noise of the detector arising from various mechanisms associated with the narrow band gap. There are considerable efforts to decrease system cost, size, weight, and power consumption to increase the operating temperature in so-called high-operating-temperature (HOT) detectors. Initial efforts were concentrated on photoconductors and photoelectromagnetic detectors. Next, several ways to achieve HOT detector operation have been elaborated including non-equilibrium detector design with Auger suppression and optical immersion. Recently, a new strategies used to achieve HOT detectors include barrier structures such as nBn, material improvement to lower generation-recombination leakage mechanisms, alternate materials such as superlattices and cascade infrared devices. Another method to reduce detector's dark current is reducing volume of detector material via a concept of photon trapping detector. In this paper, a number of concepts to improve performance of photon detectors operating at near room temperature are presented. Mostly three types of detector materials are considered - HgCdTe and InAsSb ternary alloys, and type-II InAs/GaSb superlattice. Recently, advanced heterojunction photovoltaic detectors have been developed. Novel HOT detector designs, so called interband cascade infrared detectors, have emerged as competitors of HgCdTe photodetectors.
Rocznik
Strony
239--257
Opis fizyczny
Bibliogr. 63 poz., rys., il., wykr.
Twórcy
autor
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw, Poland
Bibliografia
  • 1. J. Piotrowski and A. Rogalski, „Uncooled long wavelength infrared photon detectors”, Infrared Physics & Technol. 46, 115-131 (2004).
  • 2. J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007.
  • 3. J. Piotrowski and A. Piotrowski, „Room temperature IR photodetectors”, in Mercury Cadmium Telluride. Growth, Properties and Applications, edited by P. Capper and J. Garland, pp. 513-537, Wiley, West Sussex, 2011.
  • 4. A. Rogalski, Infrared Detectors, CRC Press, Boca Raton, 2011.
  • 5. J. Piotrowski and A. Rogalski, „Photoelectromagnetic, magnetoconcentration and Dember infrared detectors” in Narrow-Gap II-VI Compounds and Electromagnetic Applications, pp. 506-525, edited by P. Capper, Chapman & Hall, London, 1997.
  • 6. C. T. Elliott and N. T. Gordon, „Infrared detectors”, in Handbook on Semiconductors, Vol. 4, pp. 841–936, edited by C. Hilsum, North-Holland, Amsterdam (1993).
  • 7. C. T. Elliott, „Non-equilibrium mode of operation of narrow-gap semiconductor devices”, Semicond. Sci. Technol. 5, S30-S37 (1990).
  • 8. T. Elliott, „New infrared and other applications of narrow gap semiconductors”, Proc. SPIE 3436, 763-775 (1998).
  • 9. Z. Djuric and J. Piotrowski, „Infrared photodetector with electromagnetic carrier depletion”, Opt. Eng. 31, 1955-1960 (1992).
  • 10. J. Piotrowski, W. Gawron, and Z. Djuric, „New generation of near-room-temperature photodetectors”, Opt. Eng. 33, 1413-1421 (1994).
  • 11. C. T. Elliott, „Photoconductive and non-equilibrium devices in HgCdTe and related alloys”, in Infrared Detectors and Emitters: Materials and Devices, pp. 279-312, edited by P. Capper and C. T. Elliott, Kluwer Academic Publishers, Boston, 2001.
  • 12. J. Piotrowski and A. Rogalski, Comment on „Temperature limits on infrared detectivities of InAs/InxGa1-xSb superlltices and bulk Hg1-xCdxTe”, J. Appl. Phys. 74, 4774 (1993), J. Appl. Phys. 80, 2542-2544 (1996).
  • 13. J. Piotrowski and W. Gawron. „Ultimate performance of infrared photodetectors and figure of merit of detector material”, Infrared Physics and Technol. 38, 63-68 (1997).
  • 14. http://www.vigo.com.pl/
  • 15. http://www.vigo.com.pl/index.php/en/content/download/2411/10089/file/catalogue%20512.pdf
  • 16. A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, A. Rogalski, „Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Physics & Technol. 49, 173-182 (2007).
  • 17. P. Madejczyk, W. Gawron, A. Piotrowski, K. Kłos, J. Rutkowski, and A. Rogalski, „Improvement in performance of high-operating temperature HgCdTe photodiodes”, Infrared Physics & Technol. 54, 310-315 (2011).
  • 18. J. D. Kim and M. Razeghi, „Investigation of InAsSb infrared photodetectors for near-room temperature operatio”, Opto-Electron. Rev. 6, 217-230 (1998).
  • 19. H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, „Uncooled atmospheric window InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12 µm”, IEEE J. Quantum Electron. 35, 1041-1044 (1999).
  • 20. P. W. Kruse, „Indium antimonide photoelectromagnetic infrared detector”, J. Appl. Phys. 30, 770-778 (1959).
  • 21. E. Michel and M. Razeghi, „Recent advances in Sb-based materials for uncooled infrared photodetectors”, Opt.-Electr. Rev. 6, 11-23 (1998).
  • 22. E. G. Camargo, K. Ueno, T. Morishita, M. Sato, H. Endo, M. Kurihara, K. Ishibashi, and M. Kuze, „High-sensitivity temperature measurement with miniaturized InSb mid-IR sensor”, IEEE Sensors J. 7, 1335-1339 (2007).
  • 23. M. Kuze, T. Morishita, E. G. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Toktuo, and H. Goto, „Development of uncooled miniaturized InSb Photovoltaic infrared sensors for temperature measurements”, J. Crystal Growth 311, 1889-1892 (2009).
  • 24. A. Rogalski, „InAs1-xSbx infrared detectors”, Prog. Quantum Electron. 13, 191-231 (1989).
  • 25. P. Knowles, L. Hipwood, N. Shorrocks, I. M. Baker, L. Pillans, P. Abbott, R. Ash, and J. Harji, „Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates”, Proc. SPIE 8541, 854108 (2012). doi:10.1117/12.971431.
  • 26. L. Pillans, R. M. Ash, L. Hipwood, and P. Knowles, „MWIR mercury cadmium telluride detectors for high operating temperatures”, Proc. SPIE 8353, 83532W (2012).
  • 27. R. DeWames and J. Pellegrino, „Electrical characteristics of MOVPE grown MWIR N+p(As) HgCdTe hetero-structure photodiodes build on GaAs substrates”, Proc. SPIE 8353, 83532P (2012).
  • 28. J. G. A. Wehner, E. P. G. Smith, G. M. Venzor, K. D. Smith, A. M. Ramirez, B. P. Kolasa, K. R. Olsson, and M. F. Vilela, „HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption”, J. Electron. Mater. 40, 1840-1846 (2011).
  • 29. K. D. Smith, J. G. A. Wehner, R. W. Graham, J. E. Randolph, A. M. Ramirez, G. M. Venzor, K. Olsson, M. F. Vilela, and E. P. G Smith, „High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays”, Proc. SPIE 8353, 83532R (2012).
  • 30. D. A. G. Bruggeman, „Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen”, Ann. Phys. (Leipzig) 24, 636-679 (1935).
  • 31. K. T. Posani, V. Tripathi, S. Annamalai, S. Krishna, R. Perahia, O. Crisafulli, and O. Painter, „Quantum dot photonic crystal detectors”, Proc. SPIE 6129, 612906-1-8 (2006).
  • 32. S. Krishna, K. T. Posani, V. Tripathi, S. Annamalai, R. Perahia, O. Crisafulli, and O. Painter, „Quantum dot infrared sensors with photonic crystal cavity”, Proc. Laser & Electro-optical Society, Vol. 1, pp. 909-910, 2005.
  • 33. N. K. Dhar and R. Dat, „Advanced imaging research and development at DARPA”, Proc. SPIE 8353, 835302 (2012).
  • 34. A. I. D'Souza, E. Robinson, A. C. Ionescu, D. Okerlund, T. J. deLyon, R. D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P. S. Wijewarnasuriya, and C. Grein, „MWIR InAs1-xSbxnCBn detectors data and analysis”, Proc. SPIE 8353, 835333 (2012).
  • 35. S. Maimon and G. W. Wicks, „nBn detector, an infrared detector with reduced dark current and higher operating temperature”, Appl. Phys. Lett. 89, 151109 (2006).
  • 36. D. Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C. J. Hill, A. Khoshakhlagh, and S. D. Gunapala, „Type-II superlattice infrared detectors”, in Semiconductors and Semimetals, Vol. 84, pp. 1-57, edited by S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Elsevier, Amsterdam, 2011.
  • 37. A. M. Itsuno, J. D. Philips, and S. Velicu, „Design and modelling of HgCdTe nBn detectors”, J. Elect. Mater. 40, 1624-1629 (2011).
  • 38. P. Klipstein, „XBn' barrier photodetectors for high sensitivity and high operating temperature infrared sensors”, Proc. SPIE. 6940, 69402U-1-11 (2008).
  • 39. D. Z. Ting, C. J. Hill, A. Soibel, J. Nguyen, S. A. Keo, M. C. Lee, J. M. Mumolo, J. K. Liu, and S. D. Gunapala, „Antimonide-based barrier infrared detectors”, Proc. SPIE 7660, 76601R-1-12 (2010).
  • 40. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, „Bn barrier photodetectors based on InAsSb with high operating temperatures”, Opt. Eng. 50, 061002-1-10 (2011).
  • 41. J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, „nBn structure based on InAs/GaSb type-II strained layer superlattices”, Appl. Phys. Lett. 91, 043514-1-2 (2007).
  • 42. B.-M. Nguyen, S. Bogdanov, S. A. Pour, and M. Razeghi, „Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection”, Appl. Phys. Lett. 95, 183502-1-3 (2009).
  • 43. A. D. Hood, A. J. Evans, A. Ikhlassi, D. L. Lee, and W. E. Tennant, „LWIR strained-layer superlattice materials and devices at Teledyne Imaging Sensors”, J. Electron. Mater. 39, 1001-1006 (2010).
  • 44. D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, „A high-performance long wavelength superlattice complementary barrier infrared detector”, Appl. Phys. Lett. 95, 023508-1-3 (2009).
  • 45. E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, „InAsSb-based Xbnn bariodes grown by molecular beam epitaxy on GaAs”, J. Crystal Growth 339, 31-35 (2012).
  • 46. P. Maryniuk and A. Rogalski, „Modelling of InAsSb/AlAsSb nBn HOT detector's performance limit”, to be published.
  • 47. W. E. Tennant, D. Lee, M. Zandian, E. PiQuette, and M. Carmody, „MBE HgCdTe technology: A very general solution to IR detection, described by „Rule07”, a very convenient heuristic”, J. Electron. Mater. 37, 1406-1410 (2008).
  • 48. S. Velicu, J. Zhao, M. Morley, A. M. Itsuno, and J. D. Philips, „Theoretical and experimental investigation of MWIR HgCdTe nBn detectors”, Proc. SPIE 8268, 82682X (2012).
  • 49. P. Martyniuk and A. Rogalski, „Modelling of MWIR HgCdTe complementary barrier HOT detector”, Solid-State Electron. 80, 96-104 (2013).
  • 50. P. Martyniuk and A. Rogalski, „Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector”, to be published in Bull. Pol. Ac. Tech.
  • 51. P. Martyniuk, J. Wróbel, E. Plis, P. Madejczyk, A. Kowalewski,W. Gawron, S. Krishna, and A. Rogalski, „Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector”, Semicond. Sci. Technol. 27, 055002 (2012).
  • 52. P. Martyniuk, J. Wróbel, E. Plis, P. Madejczyk, W. Gawron, A. Kowalewski, S. Krishna, and A. Rogalski, „Modelling of mid wavelength infrared InAs/GaSb type II superlattice detectors”, Opt. Eng. 52, 061307-1-12 (2013).
  • 53. A. Gomez, M. Carras, A. Nedelcu, E. Costard, X. Marcadet, V. Berger, „Advantages of quantum cascade detectors”, Proc. SPIE 6900, 69000J-1-14 (2008).
  • 54. F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Köhler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jäckel, M. Fischer, J. Faist, and D. Hofstetter, „Quantum cascade detectors”, IEEE J. Quantum Electron. 45, 1039-1052 (2009).
  • 55. D. Hofstetter, F. R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Köhler, „Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry”, Appl. Phys. B 100, 313-320 (2010).
  • 56. A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, P. Bois, and V. Berger, „State of the art of quantum cascade photodetectors”, Proc. SPIE 7660, 76603Q-1-10 (2010).
  • 57. A. Buffaz, A. Gomez, M. Carras, L. Doyennette, and V. Berger, „Role of subband occupancy on electronic transport in quantum cascade detectors”, Phys. Rev. B 81, 075304-1-8 (2010).
  • 58. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, Berlin, 2007.
  • 59. J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chung, „Interbad cascade detectors with room temperature photovoltaic operation”, Appl. Phys. Lett. 86, 101102-1-3 (2005).
  • 60. R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, „Interband-cascade infrared photodetectors with superlattice absorbers”, J. Appl. Phys. 107, 054514-1-6 (2010).
  • 61. Z. Tian, R. T. Hinkey, R. Q. Yang, D. Lubyshev, Y. Qiu, J. M. Fastenau, W. K. Liu, and M. B. Johnson, „Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers”, J. Appl. Phys. 111, 024510-1-6 (2012).
  • 62. N. Gautam, S. Myers, A. V. Barve, B. Klein, E. P. Smith, D. R. Rhiger, L. R. Dawson, and S. Krishna, „High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice”, Appl. Phys. Lett. 101, 021106-1-4 (2012).
  • 63. N. Gautam, „Unipolar barrier strained layer superlattice infrared photodiodes: physics and barrier engineering”, Dissertation, The University of New Mexico, Albuquerque, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.