PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

TiO₂/SiO₂ multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper designing, preparation and characterization of multifunctional coatings based on TiO₂/SiO₂ has been described. TiO₂ was used as a high index material, whereas SiO₂ was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450-800 nm). As a top layer, TiO₂ with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO₂ and SiO₂ single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO₂/SiO₂ multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.
Słowa kluczowe
Rocznik
Strony
233--238
Opis fizyczny
Bibliogr. 21 poz., rys., il., wykr.
Twórcy
autor
autor
autor
autor
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, 11/17 Janiszewskiego, 50-372, Wrocław, Poland, michal.mazur@pwr.wroc.pl
Bibliografia
  • 1. M. Giotia, S. Logothetidis, C. Charitidis, Y. Panayiotatos, and I. Varsano, „On the properties and functionality of ultra-thin diamond related protective coatings used in optical systems”, Sensor Actuat. A-Phys 99, 35-40 (2002).
  • 2. M. Asghar, M. Shoaib, F. Placido, and S. Naseem, „Wide bandpass optical filters with TiO2 and Ta2O5”, Cent. Eur. J. Phys. 6, 853-863 (2008).
  • 3. J. Han, Y. Dou, M. Wei, D. G. Evans, and X. Duan, „Antireflection/antifogging coatings based on nanoporous films derived from layered double hydroxide”, Chem. Eng. J. 169, 371-378 (2011).
  • 4. S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, „Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique”, Sol. Energ. Mat. Sol. C 90, 2710-2719 (2006).
  • 5. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, „TiN layer as an antireflection and antistatic coating for display”, Surf.Coat. Tech. 128-129, 156-160 (2000).
  • 6. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, „Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapour deposition for antireflection coating”, J. Non-Cryst. Solids 216, 77-82 (1997).
  • 7. M. H. Asghar, F. Placido, and S. Naseem, „Reactively evaporated multilayer antireflection coatings for Ge optical window”, J. Phys. D - Appl. Phys. 40, 2065-2070 (2007).
  • 8. M. H. Asghar, F. Placido, and S. Naseem, „Characterization of reactively evaporated TiO2 thin films as high and medium index layers for optical applications”, Eur. Phys. J. Appl. Phys. 35, 177-184 (2006).
  • 9. A. Rothschild, F. Edelman, Y. Komem, and F. Cosandey, „Sensing behaviour of TiO2 thin films exposed to air at low temperatures”, Sensor.Actuat.B-Chem. 67, 282–289 (2000).
  • 10. S. Boyadzhiev, V. Georgieval, and M. Rassovska, „Characterization of reactive sputtered TiO2 thin films for gas sensor applications”, J. Phys.Conf. Ser. 253, 012040 (2010).
  • 11. M. Kaito, Y. Oshima, and K. Uraba, „Preparation and electrochromism of RF-sputtered TiO2 films”, Jpn. J. App. Phys. 36, 4423 (1997).
  • 12. M. Qi, K. Itoh, M. Murabayash, and C. R. Lavers, „Characterization and application of a channel-planar composite waveguide”, Opt. Lett. 25, 1427-1429 (2000).
  • 13. L. J. Meng and F. Placido, „Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications”, Surf. Coat. Tech. 166, 44-50 (2003).
  • 14. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, „WSXM: A software for scanning probe microscopy and a tool for nanotechnology”, Rev. Sci. Instrum. 78, 013705 (2007).
  • 15. D. Y. Kwok and A. W. Neumann, „Contact angle measurement and contact angle interpretation”, Adv. Colloid. Interfac. 81, 167-249 (1999).
  • 16. W. C. Oliver and G. M. Pharr, „A new improved technique for determining hardness and elastic modulus using load and sensing indentation experiments”, J. Mater. Res. 7, 1564-1582 (1992).
  • 17. M. F. Doerner and W. D. Nix, „A method for interpreting the data depth-sensing indentation instruments”, J. Mater. Res. 1, 601–609 (1986).
  • 18. U. Beck, D. T. Smith, G. Reiners, and S. J. Dapkunas, „Mechanical properties of SiO2 and Si3N4 coatings: a BAM/NIST cooperative project”, Thin Solid Films 332, 164-171, (1998).
  • 19. S. Mathur and P. Kuhn, „CVD of titanium oxide coatings: Comparative evaluation of thermal and plasma assisted processes”, Surf. Coat. Tech. 201, 807-814 (2006).
  • 20. M. D. Michel, A. Mikowski, C. M. Lepienski, C. E. Foerster, and F. C. Serbena, „High temperature microhardness of soda-lime glass”, J. Non-Cryst. Solids 348, 131-138 (2004).
  • 21. E. Sharfrin and W. A. Zisman, „Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers”, J. Phys. Chem. 64, 519-524 (1960).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.