PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards optoelectronic detection of explosives

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue - violet diode lasers (410 nm) as well as with QCL lasers (5.26 µm and 4.53 µm) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.
Rocznik
Strony
210--219
Opis fizyczny
Bibliogr. 79 poz., rys., il., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00–908 Warsaw, Poland, jwojtas@wat.edu.pl
Bibliografia
  • 1. E. M. A. Hussein and E. J. Walker, „Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics”, Radiat. Meas. 29, 581-591 (1998).
  • 2. J. Reno, R. C. Fisher, L. Robinson, N. Brennan, and J. Travis, Guide for the selection of commercial explosives detection systems for low enforcement application, U.S. National Institute of Justice, Washington, 1999.
  • 3. G. Harding, „X-ray scatter tomography for explosives detection”, Radiat. Phys.Chem. 71, 869-881 (2004).
  • 4. H. Vogel, „Search by X-rays applied technology”, Eur. J. Radiol. 63, 227-236 (2007).
  • 5. Y. Liu, B. D. Sowerby, and J. R. Tickner, „Comparison of neutron and high-energy X-raydual-beam radiography for air cargo inspection”, Appl. Radiat. Isotopes 66, 463-473 (2008).
  • 6. A. Dicken, K. Rogers, P. Evans, J. Rogers, and J. W. Chan, „The separation of X-ray diffraction patterns for threat detection”, Appl. Radiat. Isotopes 68, 439-443 (2010).
  • 7. L. Eger, S. Do, P. Ishwar, W. C. Karl, and H. Pien, „A learning-based approach to explosives detection using multi-energy X-ray computed tomography”, Int. Conf. Acoust. Spee., pp. 2004-2007, Prague, 2011.
  • 8. A. A. Faust, R. E. Rothschild, P. Leblanc, J. E. McFee, „Development of a coded aperture X-ray backscatter imager for explosive device detection”, IEEE T. Nucl. Sci. 56, 299-307 (2009).
  • 9. W. Susek, „Thermal microwave radiation for subsurface absolute temperature measurement”, Acta Phys. Pol. A118, 1246-1249 (2010).
  • 10. S. Seguin, Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T, 2009.
  • 11. M. C. Kemp, „Explosives detection by terahertz spectroscopy - a bridge too far?”, IEEE T. Terahertz Science and Technology 1, 282-292 (2011).
  • 12. L. Yun-Shik, Principles of Terahertz Science and Technology, Springer, Berlin, 2008.
  • 13. D. Dragoman and M. Dragoman, „Terahertz fields and applications”, Prog. Quantum Electron. 28, 1-66 (2004).
  • 14. N. Palka, „THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy” Acta Phys.Pol. A 120, 713-715 (2011).
  • 15. D. J. Daniels, „Ground penetrating radar for buried landmine and IED detection, unexploded ordnance detection and mitigation” NATO Science Peace S.(2009).
  • 16. P. Kaczmarek, J. Karczewski, M. Łapiński, W. Miluski, M. Pasternak, and D. Silko, „Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection”, Proc. Int. Radar Symp,. pp. 105-109, Leipzig, 2011.
  • 17. Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, „Sensors and systems for the detection of explosive devices” Metrol. Meas. Syst. 19, 3-28 (2012).
  • 18. E. L. Reber, C. Larry, and G. Blackwood, „Explosives detection system: development and enhancements” Sens.Imaging 8, 121-130 (2007).
  • 19. R. C. Runkle and T. A. White, „Photon and neutron interrogation techniques for chemical explosives detection in air cargo”,Nucl. Instrum. Meth. A 603, 510-528 (2009).
  • 20. F. D. Brooks, M. Drosg, F. D. Smit, and C. Wikner, „Detection of explosive remnants of war by neutron thermalisation”, Appl. Radiat. Isotopes 70, 119-127 (2011).
  • 21. S. K. Sharma, S. Jakhar, R. Shukla, A. Shyama, and C. V. S. Raob, „Explosive detection system using pulsed 14 MeV neutron source”, Fusion Eng. Des. 85, 1562-1564 (2010).
  • 22. N. Fischer, T. M. Klapötke, J. Stierstorfer, and C. Wiedemann, „1-Nitratoethyl-5-nitriminotetrazole derivatives - Shaping future high explosives”, Polyhedron 30, 2374-2386 (2011).
  • 23. E. Gudmundson, A. Jakobsson, and P. Stoica, „Based explosives detection-an overview” IEEE T. Signal Proces. 56, 887-894 (2009).
  • 24. X. Zhang, S. Balkir, M. W. Hoffman, and N. Schemm, „A robust CMOS receiver front-end for nuclear quadrupole resonance based explosives detection” IEEE Int. Symp. Circ. S 53, 1093-1096 (2010).
  • 25. X. Wang, P. Liu, K. A. Fox, J. Tang, J. A. Colón Santana, K. Belashchenko, P. A. Dowben, and Y. Sui, „The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition”, IEEE Trans. Magn. 46, 1879-1882 (2010).
  • 26. J. A. S. Smith, M. Blanz, T. J. Rayner, M. D. Rowe, S. Bedford, and K. Althoefer, „14 N quadrupole resonance and 1h t1 dispersion in the explosive rdx”, J. Magn. Reson. 213, 191-196 (2011).
  • 27. A. Gregorovic and T. Apih, „TNT detection with 14N NQR: Multipulse sequences and matched filter”, J. Magn. Reson. 198, 215-221 (2009).
  • 28. T. M. Osa, L. M. Cerionia, J. Forguez, J. M. Olle, and D. J. Pusiola, „NQR: From imaging to explosives and drugs detection”, PhysicaB389, 45-50 (2007).
  • 29. M. Ostafin and B. Nogaj, „14N-NQR based device for detection of explosives in landmines”, Measurement 40, 43-54 (2007).
  • 30. S. E. Stitzel, L. J. Cowen, K. J. Albert, and D. R. Walt, „Array-to-array transfer of an artificial nose classifier”, Anal. Chem. 73, 5266-5271 (2001).
  • 31. M. E. Koscho, R. H. Grubbs, and N. S. Lewis, „Properties of vapour detector arrays formed through plasticization of carbon black-organic polymer composites”, Anal. Chem. 74, 1307-1315 (2002).
  • 32. H. Wohltejen and, A. W. Snow, „Colloidal metal-insulator-metal ensemble chemiresistor sensor”, Anal. Chem. 70, 2856-2859 (1998).
  • 33. T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner, Handbook of Machine Olfaction, edited by Wiley-VCH, Weinheim, 2003.
  • 34. W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, „Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, B. Pol. Acad. Sci. Te. 56, 133-138 (2008).
  • 35. A. Murugarajan and G. L. Samuel, „Measurement, modelling and evaluation of surface parameter using capacitive-sensor - based measurement system”, Metrol. Meas. Syst. 18, 403-418 (2011).
  • 36. http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose
  • 37. http://www.prenhall.com/settle/chapters/ch31.pdf
  • 38. O. L. Collin, C. Niegel, K. E. DeRhodes, B. McCord, and G. P. Jackson, „Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector”, J. Forensic Sci. 51, 815-818 (2006).
  • 39. G. Eiceman and Z. Karpas, Ion Mobility Spectrometry. CRC Press, Boca Raton, USA, 2005.
  • 40. L. Ebdon, E. H. Evans, A. Fisher, and S. J. Hill, An Introduction to Analytical Atomic Spectrometry, edited by John Wiley & Sons Ltd, Chichester, 1998.
  • 41. http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html
  • 42. http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector
  • 43. R. Wilson, C. Clavering, and A. Hutchinson, „Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT”, J. Electroanal.Chem. 557, 109-119 (2003).
  • 44. T. Jezierski, A. Górecka-Bruzda, M. Walczak, A. H. Świergiel, M. H. Chruszczewski, and B. L. Pearson, „Operant conditioning of dogs (Canis familiaris) for identification of humans using scent lineup”, Animal Science Papers and Reports 28, 81-93 (2010).
  • 45. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, „Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B 94, 396-373 (2009).
  • 46. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, „Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express 17, 3673-3678 (2009).
  • 47. N. A. Hatab, G. Eres, P. B. Hatzingerc, and B. Gua, „Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy”, J. Raman Spectrosc. 41, 1131-1136 (2010).
  • 48. J. Smulko, M. Gnyba, and A. Kwiatkowski, „Detection of illicit chemicals by portable Raman spectrometer”, Bull. Pol. Ac.: Tech. 59, 449-452, 2011.
  • 49. http://www.sciencedaily.com/releases/2011/05/110509161759.htm (2011).
  • 50. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, edited by John Wiley & Sons, online, 2006.
  • 51. J. L. Gottfried, Jr F. C. De Lucia, C. A. Munson, and A. W. Miziolek, „Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects”, Anal. Bioanal. Chem. 395, 283-300 (2009).
  • 52. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, „Analysis of explosive and other residues by laser induced breakdown spectroscopy”, Spectrochim. Acta B 64, 1028-1039 (2009).
  • 53. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, „New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy”, Spectrochim. Acta B 66, 12-20 (2011).
  • 54. K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, „New method of elaboration of the LIDAR signal”, Appl. Phys. B 70, 295-301 (2000).
  • 55. http://www.as.northropgrumman.com/products/almds/assets/ALMDS_Fact_Sheet.pdf (2008).
  • 56. B. M. Onat, G. Itzler, and M. Carver, „A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging”, Proc. SPIE 7310, 731004-1 (2009).
  • 57. S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, „Laser-based standoff detection of explosives: a critical review”, Anal. Bioanal. Chem. 395, 259-274 (2009), DOI:10.1007/s00216-009-2844-3.
  • 58. H. Schubert and A. Kuznetsov, Detection and disposal of improvised explosives, pp. 7-9, Springer, St. Petersburg, 2005.
  • 59. HITRAN 2008. High-resolution transmission molecular absorption database, http://www.hitran.com (2005).
  • 60. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, „Applications of quartz tuning forks in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005).
  • 61. M. Pedersen and J. McClelland, „Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications”, Proc. SPIE 108, 5732 (2005).
  • 62. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, „Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection”, Opt. Express 13, 2453–2458 (2005).
  • 63. http://www.sciencedaily.com/releases/2008/06/080625153328.htm (2008).
  • 64. I. A. Nadezhdinskii, Ya. Ponurovskii, and M. V. Spiridonov, Explosives detection by means of nitrogen dioxide trace concentration measurements, 2011.
  • 65. J. M. Chalmers Mid-infrared spectroscopy. Spectroscopy in process analysis, CRC Press LLC.,117.ISBN1841270407, 1999.
  • 66. A. O'Keefe and D. A. G. Deacon, „Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544-2554 (1988).
  • 67. K. W. Busch and M. A. Busch, „Cavity-ringdown spectroscopy, an ultratrace-absorption measurement technique”,ACS Sym. Ser. 720, American Chemical Society, Washington DC (1999).
  • 68. V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, „Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys.B 76, 691-698 (2003).
  • 69. J. Wojtas, Detection of optical radiation in Nox optoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics - Devices and Applications, Intech Publishers, Vienna, ISBN 978953-307-576-1, 147-172, 2011.
  • 70. J. Wojtas, A. Czyzewski, T. Stacewicz, and Z. Bielecki, „Sensitive detection of NO2 with Cavity Enhanced Spectroscopy”, Optica Applicata 36, 461-467 (2006).
  • 71. Z. Bielecki, T. Stacewicz, J. Wojtas, M. Nowakowski, and J. Mikołajczyk, Polish patent application No P.394439 (2011).
  • 72. J. Wojtas and Z. Bielecki, „Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev. 16, 44-51 (2008).
  • 73. J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki, „Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac: Tech. 59, (2011).
  • 74. T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, „Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, 77-90, (2012).
  • 75. J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, and Z. Bielecki, „NO and N2O detection employing cavity enhanced technique”, Proc. SPIE 8374, 837414 (2012).
  • 76. T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, „Optical interferometric structures for application in gas sensors”, Optica Applicata 37, 187-194 (2007).
  • 77. W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, „Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, Acta Physica Polonica A116 (3), 315-320 (2009).
  • 78. P. Struk, T. Pustelny, K. Golaszewska, E. Kaminska, M. Borysewicz, M. Ekielski, and A. Piotrowska, „Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev. 19, 462-467 (2011).
  • 79. J. Yinon, Forensic and environmental detection of explosives, edited by John Wiley & Sons, New York, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.