Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Deformations of homeotropically aligned flexoelectric nematic layers induced by dc electric fields were simulated numerically. Two different anchoring strengths on the limiting surfaces were assumed. Nematic material was characterised by negative dielectric anisotropy. Both signs of the sum of flexoelectric coefficients were taken into account. The electric properties of the layer were described in terms of a weak electrolyte model. Mobility of cations was assumed to be one order of magnitude lower than that of anions. Quasi-blocking electrode contacts were assumed. The threshold voltages for deformations were determined by means of calculations of the phase difference Φ between ordinary and extraordinary light rays passing through a layer placed between crossed polarisers. The threshold values depended on the polarity of the bias voltage U. When the threshold value was exceeded, the phase difference increased with the voltage. Two different Φ(U/Uthreshold) dependencies for the two polarities of the voltage were found for each layer if the nematic possessed the flexoelectric properties. The possibility of using this effect to detect the flexoelectricity in the nematic was explored by simulated experiments. The effectiveness of the proposed method is discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
205--209
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
autor
- Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 90–924 Łódź, Poland, gderfel@p.lodz.pl
Bibliografia
- 1. R. B. Meyer, „Piezoelectric effects in liquid crystals”, Phys. Rev. Lett. 22, 918-921 (1969).
- 2. N. T. Kirkman, T. Stirner, and W. E. Hagston, „Continuum modelling of hybrid-aligned nematic liquid crystal cells: optical response and flexoelectricity-induced voltage shift”, Liq. Cryst. 30, 1115-1122 (2003).
- 3. S. A. Jewell and J. R. Sambles, „Fully leaky guided mode study of the flexoelectric effect and surface polarization in hybrid aligned nematic cells”, J. Appl. Phys. 92, 19-24 (2002).
- 4. E. K. Tidey, L. A. Parry-Jones, and S. J. Elston, „Determination of the difference of flexoelectric coefficients in a nematic liquid crystal using a conoscopic technique”, Liq. Cryst. 34, 251-255 (2007).
- 5. B. I. Outram and S. J. Elston, „Determination of flexoelectric coefficients in nematic liquid crystals using the crystal rotation method”, Liq. Cryst. 39, 149-156 (2012).
- 6. A. G. Petrov, „Measurements and interpretation of flexoelectricity”, Physical Properties of Liquid Crystals: Nematics, pp. 251-264, edited by G. D. Dunmur, A. Fukuda, and G. Luckhurst, INSPEC, London, 2001.
- 7. S. Ponti, P. Ziherl, C. Ferrero, and S. Zumer, „Flexoelectro-optic effect in a hybrid nematic liquid crystal cell”, Liq. Cryst. 26, 1171-1177 (1999).
- 8. J. C. Jones, E. L. Wood, G. P. Bryan-Brown, and V. C. Hui, „Novel configuration of the zenithal bistable nematic liquid crystal device”, SID 98 Digest 858 (1998).
- 9. A. J. Davidson and N. J. Mottram, „Flexoelectric switching in a bistable nematic device”, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 0517101-051710-10 (2002).
- 10. P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, „Linear electro-optic effect based on flexoelectricity in a cholesteric with a sign change of a dielectric anisotropy”, J. Appl. Phys. 76, 7778-7783 (1994).
- 11. F. Castles, S. Morris, and H. Coles, „Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration”, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 80, 031709-1-031709-9 (2009).
- 12. G. Derfel and M. Buczkowska, „Flexoelectric deformations of homeotropic nematic layers in the presence of ionic conductivity”, Liq. Cryst. 32, 1183-1190 (2005).
- 13. M. Buczkowska and G. Derfel, „Influence of ionic transport on deformations of homeotropic nematic layers with positive flexoelectric coefficients”, Liq. Cryst. 32, 1285-1293 (2005).
- 14. G. Derfel and M. Buczkowska, „Threshold voltage for purely flexoelectric deformations of conducting homeotropic nematic layers”, Liq. Cryst. 34, 113-125 (2007).
- 15. M. Buczkowska, „Strong deformations induced by a DC electric field in homeotropic flexo-electric nematic layers”, Liq. Cryst. 37, 1331-1337 (2010).
- 16. M. Buczkowska, „Numerical analysis of deformations induced by dc electric field in homeotropic nematic layers with giant flexoelectricity”, Mol. Cryst. Liq. Cryst. 543, 48-56 (2011).
- 17. M. Buczkowska and G. Derfel, „Analysis of deformations of flexoelectric homeotropic liquid crystal layers with various anchoring strengths”, Opto-Electron. Rev. 19, 56-60 (2011).
- 18. M. Buczkowska and G. Derfel, „Optical properties of homeotropically aligned flexoelectric nematic layers deformed by direct current electric field”, J. Appl. Phys. 110, 053514-1 - 053514-4 (2011).
- 19. A. Derzhanski, A. G. Petrov, and M. D. Mitov, „One-dimensional dielectric-flexoelectric deformations in nematic layers”, J. Phys. (Paris) 39, 273 (1978).
- 20. H. Naito, M. Okuda, and A. Sugimura, „Transient discharging processes in nematic liquid crystals”, Phys. Rev. A: At., Mol., Opt. Phys. 44, R3434-3437 (1991).
- 21. G. Derfel and A. Lipiński, „Charge carrier mobility measurements in nematic liquid crystals”, Mol. Cryst. Liq.Cryst. 55, 89-99 (1979).
- 22. G. Briere, F. Gaspard, and R. Herino, „Cinetique de dissociation et relaxation de conduction ionique en phase liquide”, J. Chim. Phys. 68, 845 (1971).
- 23. H. de Vleeschouwer, A. Verschueren, F. Bougriona, R. Van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, „Long-term ion transport in nematic liquid crystal dislays”, Jpn. J. Appl. Phys. 40, 3272-3276 (2001).
- 24. H. Gruler, T. J. Sheffer, and G. Meier, „Elastic constants of nematic liquid crystals. I. Theory of the normal deformation”, Z. Naturforsch. 27a, 966-976 (1972).
- 25. S. W. Morris, P. Palffy-Muhoray, and D. A. Balzarini, „Measurements of the bend and splay elastic constants of octylcyanobiphenyl”, Mol. Cryst. Liq. Cryst. 139, 263-280 (1986).
- 26. M. Buczkowska and G. Derfel, „Role of ions mobility in flexoelectric deformations of conducting homeotropic nematic layers”, Sci. Bull. Tech. Univ. Lódź Physics, 29, 5-24, (2008).
- 27. R. Chang and J. M. Richardson, „The anisotropic electrical conductivity of MBBA containing tetrabutyl-ammonium tetraphenyl-boride”, Mol. Cryst. Liq. Cryst. 28, 189-200 (1974).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0016