PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal management of GaInNAs/GaAs VECSELs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different methods used to reduce temperature increase within the active region of vertical-external-cavity surface-emitting lasers (VECSELs) are described and compared with the aid of the self-consistent thermal finite-element method. Simulations have been carried out for the GaInNAs/GaAs multiple-quantum-well (MQW) VECSEL operating at room temperature at 1.31 µm. Main results are presented in form of "thermal maps" which can be simply used to determine maximal temperature of different structures at specified pumping conditions. It has been found that these maps are also appropriate for some other GaAs-based VECSELs and can be very helpful especially during structure designing. Moreover, convective and thermal radiation heat transfer from laser walls has been investigated.
Słowa kluczowe
Twórcy
  • Institute of Physics, Lodz University of Technology 219 Wólczańska Str., 90–924 Łódź, Poland, adam.sokol@p.lodz.pl
Bibliografia
  • 1. M. Kuznetsov, „VECSEL semiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design”, in Semiconductor Disk Lasers: Physics and Technology, pp. 1-71, edited by Wiley-VCH Verlag, Weinheim, 2010.
  • 2. W. Nakwaski, „VCSEL structures used to suppress higher-order transverse modes”, Opto-Electron. Rev. 19, 119-129 (2011).
  • 3. H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, „Thermal management of optically pumped long-hermal management of optically pumped long-wavelength inp-based semiconductor disk lasers”, IEEE J. Sel. Top. Quantum Electron. 11, 1126-1134 (2005).
  • 4. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, „Synthetic diamond for intracavity thermal management in compact solid-state lasers”, IEEE J. Quantum Electron. 44, 709-717 (2008).
  • 5. A. J. Kemp, J.-M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, „Thermal management in 2.3-µm semiconductor disk lasers: a finite element analysis”, IEEE J. Quantum Electron. 44, 125-135 (2008).
  • 6. A. J. Maclean, A. J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M. D. Dawson, and D. Burns, „Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader”, IEEE J. Quantum Electron. 44, 216-225 (2008).
  • 7. A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, „Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach”, IEEE J. Quantum Electron. 41, 148-155 (2005).
  • 8. A. J. Maclean, A. J. Kemp, and D. Burns, „Power-scaling of a 1060 nm semiconductor disk laser with a diamond heat-spreader”, in CLEO/QELS 2008, pp. 1-2, San Jose, 2008.
  • 9. A. J. Kemp, A. J. Maclean, J. E. Hasties, A. Smith, J.-M. Hopkins, S. Calvez, G. J. Valentinem, D. Dawson, and D. Burns, „Thermal lensing, thermal management and transverse mode control in microchip VECSELs”, Appl. Phys. B 83, 189-194 (2006).
  • 10. J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, „0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 µm”, Electron. Lett. 40, 30-31 (2004).
  • 11. S. A. Smith, J.-M. Hopkins, J. E. Hastie, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, J. Kontinnen, and M. Pessa, „Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315nm”, Electron. Lett. 40, 935-936 (2004).
  • 12. J. Lau and W. Dauksher, „Thermal stress analysis of a flip-chip parallel VCSEL (Vertical-Cavity Surface-Emitting Laser) package with low-temperature lead-free (48Sn-52In) solder joints”, in Proc. of 56th Electronic Components and Technology Conf., pp. 9-17, San Diego, 2006.
  • 13. K. Lee, K. Kim, and J. J. Yoh, „Modelling of high energy laser ignition of energetic materials”, J. Appl. Phys. 103, 083536-6 (2008).
  • 14. J. T. Cook, Y. K. Joshi, R. Doraiswami, „Interconnect thermal management of high power packaged electronic architectures”, in Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symp., pp. 30-37, San Jose, 2004.
  • 15. J. Peirs, D. Reynaerts, and H. Van Brussel, „Scale effects and thermal considerations for microactuators”, in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1516-1521, Leuven, 1998.
  • 16. A. Amith, I. Kudman, and E. F. Steigmeier, „Electron and phonon scattering in GaAs at high temperature”, Phys. Rev. 138, A1270-A1276 (1965).
  • 17. S. Adachi, „GaAs, AlAs, and Alx Ga1-x As: Materials parameters for use in research and device applications”, J. Appl. Phys. 58, R1-R29 (1985).
  • 18. W. Nakwaski, „Thermal conductivity binary, ternary, and quaternary III-V compounds”, J. Appl. Phys. 64, 159-166 (1988).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.