PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of GaN quantum dot terahertz cascade laser

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper GaN based spherical quantum dot cascade lasers has been modelled, where the generation of the terahertz waves are obtained. The Schrödinger, Poisson, and the laser rate equations have been solved self-consistently including all dominant physical effects such as piezoelectric and spontaneous polarization in nitride-based QDs and the effects of the temperature. The exact value of the energy levels, the wavefunctions, the lifetimes of electron levels, and the lasing frequency are calculated. Also the laser parameters such as the optical gain, the output power and the threshold current density have been calculated at different temperatures and applied electric fields.
Słowa kluczowe
Rocznik
Strony
147--152
Opis fizyczny
Bibliogr. 25 poz., rys., il., wykr.
Twórcy
autor
  • Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51665−163, Iran
  • School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009, Australia
Bibliografia
  • 1. D. Bimberg and C. Ribbat, „Quantum dots: lasers and amplifiers”, Microelectron. J. 34, 323–328 (2003).
  • 2. C. Chang, C. Wu, P. Wang, C. Liang, F. Hwang, and X. Guo, „Quantum well and laser containing InAs quantum dots”, J. Cryst. Growth 223, 92–98 (2001).
  • 3. S. Melnik and G. Huyet, „The linewidth enhancement factor of quantum dot semiconductor lasers”, Opt. Express 14, 2950–2955, (2006).
  • 4. P. Bhattacharya, Z. Mi, J. Yang, D. Basu, and D. Saha, „Quantum dot lasers: From promise to high-performance devices”, Cryst. Growth 311, 1625–1631 (2009).
  • 5. H. Li and J.C. Cao, „Monte Carlo simulation of terahertz quantum-cascade lasers”, Terahertz Science and Technology, 1, 239–245 (2008).
  • 6. H. E. Beere, C. H. Worrall, S. Whelan, D. A. Ritchie, J. Alton, S. Barbieri, and C. Sirtori, „Tuning the emission frequency of a 2 THz quantum cascade laser by altering the total thickness of the structure”, Cryst. Growth 301/302, 935–940 (2007).
  • 7. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, and J. Tignon, „Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers”, Appl. Phys. Lett. 94, 251108, (2009).
  • 8. I. Mahmoud, M. S. El-Tokhy, M. B. El-Mashade, „Block diagram modelling of quantum laser sources”, Opt. Laser Technol. 42, 509–521 (2010).
  • 9. G. Sun, „Design of unipolar intersubband lasers for terahertz emission”, Luminescence 119/120, 528–534 (2006).
  • 10. A. Asgari and S. Razi, „High performances III-Nitride quantum dot infrared photodetector operating at room temperature”, Opt. Express 18, 14604 (2010).
  • 11. A. Asgari, E. Ahmadi, and M. Kalafi, „AlxGa1-xN/GaN Multi-Quantum Well ultraviolet detector based on p-i-n heterostructures”, Microelectron. J. 40, 104 (2009).
  • 12. A. Asgari and L. Faraone, „SiN passivation layer effects on un-gated two-dimensional electron gas density in AlGaN/AlN/GaN field-effect transistors”, Appl. Phys. Lett. 100, 122106 (2012).
  • 13. V. M. Apalkov and T. Chakraborty, „Optical properties of a quantum-dot cascade structure”, Physica E14, 294–298, (2002).
  • 14. V. V. Mitin, V. A. Kochelap, and M. A. Stroscio, Quantum Heterostructures, Cambridge University Press, New York, 1999.
  • 15. F. Bernardini and V. Fiorentini, „Spontaneous versus Piezoelectric Polarization in III-V Nitrides”, Phys. Stat. Sol. 216, 391–398 (1999).
  • 16. T. Gensty and W. Elsaber, „Semi-classical model for the relative intensity noise of intersubband quantum cascade lasers”, Opt.Commun. 256, 171–183 (2005).
  • 17. A. Asgari, S. Babanejad, and L. Faraone, „Electron mobility, Hall scattering factor, and sheet conductivity in AlGaN/AlN/GaN Heterostructures”, J. Appl. Phys. 110, 113713 (2011).
  • 18. L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, and Z. G. Wang, „Effect of inter-level relaxation and cavity length on double-state lasing performance of quantum dot lasers”,Physica E 39, 203–208 (2007).
  • 19. R. Ferreira and G. Bastard, „Evaluation of some scattering times for electrons in unbiased and biased single and multiple-quantum-well structures”, Phys. Rev. B40, 1074–1086, (1989).
  • 20. S. M. Goodnick and P. Lugli, „Effect of electron-electron scattering in nonequilibrium transport in quantum well systems”, Phys. Rev. B 37, 2578–2588 (1988).
  • 21. R. Paiella, Intersubband Transitions in Quantum Structures, edited by The McGraw-Hill Companies Inc., Boston, 2006.
  • 22. A. Rostami, H. Baghban Asghari Nejad, H. Rasooli Saghai, and M. Noori, „Linear frequency-doubling in dual Mid-IR-wavelength quantum cascade laser active region”, Superlattice. Microst. 45, 134–142 (2009).
  • 23. A. Hamadou, J. L. Thobel, and S. Lamari, „Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers”, Opt. Commun. 281, 5385–5388 (2008).
  • 24. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, „High power and tuneable single-mode quantum cascade lasers”, Mater. Sci. Eng.B 75, 93–99 (2000).
  • 25. A. Fiore and A. Markus, „Differential gain and gain compression in quantum-dot lasers, IEEE J. Quantum Elect. 43, 287–294 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.