PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quaternion epipolar decomposition for camera pose identification and animation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the literature of computer vision, computer graphics and robotics, the use of quaternions is exclusively related to 3D rotation representation and interpolation. In this research we found how epipoles in multi-camera systems can be used to represent camera poses in the quaternion domain. The rotational quaternion is decomposed in two epipole rotational quaternions and one z axis rotational quaternion. Quadratic form of the essential matrix is also related to quaternion factors. Thus, five pose parameters are distributed into three independent rotational quaternions resulting in measurement error separation at camera pose identification and greater flexibility at virtual camera animation. The experimental results refer to the design of free viewpoint television.
Twórcy
autor
  • Institute of Radioelectronics, Faculty of Electronics and Information Technology, Television Division Warsaw University of Technology, 15/19 Nowowiejska Str., 00-665 Warsaw, Poland
  • Polish-Japanese Institute of Information Technology, 86 Koszykowa Str., 02–008 Warsaw, Poland
Bibliografia
  • 1. E. Apostolidis, A. Koz, and G. Triantafyllidis, „Watermarking tests for free-view point television”, Proc. IEEE Conf. 3DTV, pp. 1–4, Kos, 2007.
  • 2. E. Cooke and N. O'Connor, „Multiple image view synthesis for free viewpoint video Applications”, Proc. IEEE Int. Conf.Image Process, pp. 1029–1032, Genoa, 2005.
  • 3. E. Cooke, P. Kau, and T. Sikora, „Multi-view synthesis: A novel view creation approach for free viewpoint video”, Signal Proces Image 21, 476–492 (2006).
  • 4. V. Nozick and H. Saito, „Real-time free viewpoint from multiple moving cameras”, Advanced Concepts for Inelligent Vision Systems, 72–83 (2007).
  • 5. G. Golub and C. Loan, Matrix Computations, 2nd edition Williamson, Johns Hopkins University Press, Baltimore, 1989.
  • 6. J. Kuipers, Quaternions and RotationSsequences, Princeton University Press, Princeton, 2002.
  • 7. W. R. Hamilton and W. E. Hamilton, Elements of Quaternions, Longmans, Green & Co., in e-Book Google, 1866.
  • 8. J. Vince, Quaternions for Computer Graphics, Springer-Verlag London, 2011.
  • 9. E. Salamin, Application of quaternions to computation with rotations, Unpublished Internal Report, Standford University, Stanford, 1979.
  • 10. B. K. P. Horn, „Closed-form solution of absolute orientation using unit quaternions”, Journal of the Optical Society of America A4, 629–642 (1987).
  • 11. O. Faugeras and Q. Luang, The Geometry of Multiple Images, The MIT Press, Cambridge, 2001.
  • 12. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2000.
  • 13. Q. Luong and O. Faugeras, „On the determination of epipoles using cross-ratios” Comput. Vis. Image Und. 71, 1–18, (1998).
  • 14. A. Smolic, K. Mueller, P. Merkle, T. Rein, T.M. Kautzner, P. Eisert, and T. Wiegand, „Free viewpoint video extraction, representation, coding, and rendering”, Proc. IEEE Int. Conf. Image Process, 3287-3290, Singapore, 2004.
  • 15. Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3-D Vision, The MIT Press, Cambridge, 2004.
  • 16. A. Nowakowski and W. Skarbek, „Homography of central points for optical distortion compensation”, Opto-Electron. Rev. 4, 202–209 (2007).
  • 17. W. Skarbek and M. Tomaszewski, „Epipolar angular factorisation of essentail matrix for camera pose calibration”, in 4th Int. Conf. Computer Vision/Computer Graphics Collaboration Techniques, Lect. Notes Comput. Sc. 5496, 401–402, (2009).
  • 18. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, 2006.
  • 19. W. Skarbek, M. Tomaszewski, and A. Nowakowski, „Camera calibration by linear decomposition”, Proc. SPIE: 6159, 838—849 (2006).
  • 20. W. Skarbek and M. Tomaszewski, „On projection matrix identification for camera calibration”, 2 nd Int. Conf. on Computer Vision Theory and Applications, Barcelona, 2007.
  • 21. R. Hartley, „In defense of the eight-point algorithm”, IEEE T. Pattern Anal. Machine Intel. 19, 580–593 (1997).
  • 22. V. Nozick and H. Saito, „Online multiple view computation for autostereoscopic display”, Pacific Rim Symp. on Image and Video Technology, 399–412, Santiago, 2007.
  • 23. Y. Ito and H. Saito, „Free-viewpoint image synthesis from multiple-view images taken with uncalibrated moving cameras”, Proc. IEEE Int. Conf. Image Process III, 29–32, Genoa, 2005.
  • 24. W. Li, J. Zhou, B. Li, and M. Sezan, „Virtual view specification and synthesis in free viewpoint television application”, Proc.IEEE Conf. 3DTV, 464–471, Toronto, 2006.
  • 25. E. Pervin and J. Webb, Quaternions in Computer Vision and Robotics, Tech. Report, Dept. of Computer Science, Carnegie-Mellon U., CMU-CS-82-150, 1982.
  • 26. G. Xu and Z. Zhang, Epipolar Geometry in Stereo, Motion, and Object Recognition, Kluwer Academic Publishers, Dordrecht, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0033-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.