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Synthesis of Macro Petri Nets
into FPGA with Distributed Memories

Arkadiusz Bukowiec and Marian Adamski

Abstract—In this paper a new method of Petri net array-based
synthesis is proposed. The method is based on decomposition of
colored interpreted macro Petri net into state machine subnets.
Each state machine subnet is determined by one color. During the
decomposition process macroplaces are expanded or replaced by
doublers of macroplace. Such decomposition leads to parallel
implementation of a digital system. The structured encoding
of places is done by using minimal numbers of bits. Colored
microoperations, which are assigned to places, are written into
distributed and flexible memories. It leads to realization of
a logic circuit in a two-level concurrent structure, where the
combinational circuit of the first level is responsible for firing
transitions, and the second level memories are used for generation
of microoperations. Such an approach allows balanced usage of
different kinds of resources available in modern FPGAs.

Index Terms—Decomposition, FGPAs, logic synthesis, Petri
nets.

I. INTRODUCTION

APPLICATION specific logic controllers or control units
[1], [2] are one of the biggest groups of electronic

devices. They can be designed as dedicated software for mi-
crocontroller or as dedicated hardware. The second approach
gives more possibilities of system integration as system on
programmable chip (SoPC) with use of field programmable
gate arrays (FPGAs). The most classical way of designed such
controllers is application of hardware description languages
(HDLs) but it is unconformable for designer and potentially
it gives high risk of human mistake. The usage of graphical
representation of algorithm is much more conformable [3]–
[5]. In this case Petri nets (PNs) [6], [7] are one of the most
adequate methods for formal design of application specific
logic controllers [1]. It gives easy way for representation of
concurrent processes and additionally there could be applied
mathematical algorithms for formal analysis and verification of
the designed model [8]–[11]. There are also several algorithms
of direct synthesis of Petri net model into FPGA devices [12]–
[15]. The most typical implementation of Petri nets into FPGA
devices use one-hot local state encoding where each single
place is represented by a flip-flop [16]. Such an approach
requires hardware implementation of a large number of several
logic functions and flip-flops included in macrocells.

One of the main features of FPGA is an existence of
separated logic elements (look-up tables) with restricted fixed
number of inputs. Very frequently logic functions have more
arguments than number of inputs of such logic element. It
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forces a functional decomposition during a synthesis process
and consumes a large number of logic elements. One of
the methods of decreasing a number of such functions is
architectural decomposition of a sequential circuit [17], [18].
Such methods introduce several additional internal variables
and very often consume more hardware than typical direct
implementation. This issue can be resolved by using logic
elements together with embedded memory blocks [19] that
are available in modern FPGA devices.

There is proposed the method of synthesis that allows to
decrease the number of implemented logic functions depend-
ing on inputs and internal variables of Petri net-based logic
controller in the paper. The logic functions are classified
into two sets. The first set contains functions responsible for
describing preconditions and guards of transitions. This set
is going to be synthesized with use of logic elements. The
second set contains functions responsible for generation of
microoperations and it is going to be realized with use of
the embedded memory blocks. To permit the minimal local
state encoding the Petri net is initially colored [20] and it
is compacted into macro Petri net [21]. Macroplaces that are
colored by the same color create one state machine module.
Consequently, places, represented by these macroplaces, could
be encoded by a minimal-length binary vector. This encoding
also allows a reasonable decomposition of a microoperation
decoder into several concurrently working distributed memo-
ries. Each memory block controls only microoperations that
belong to the subnet with the same color. A new procedure
of extracting subnets supplements the known methods of Petri
net SM coloring [1], [13], [16], [22]–[24]. In such a way it
leads to balanced usage of all kinds of logic resources of the
FPGA device. Very frequently such a method gives also an
effective utilization of all FPGA resources by a whole digital
system.

II. PETRI NET AND ITS EXTENSIONS

A simple Petri net [6], [7] is defined as a triple

PN = (P, T, F ), (1)

where:
P is a finite non-empty set of places,

P = {p1, . . . , pM}
T is a finite non-empty set of transitions,

T = {t1, . . . , tS}
F is a set of flow relations called arcs from places to

transitions and from transitions to places:

F ⊆ (P × T ) ∪ (T × P ),
P ∩ T = ∅.
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Sets of input and output transitions of a place pm ∈ P are
defined respectively as follows:

•pm = {ts ∈ T : (ts, pm) ∈ F},
pm• = {ts ∈ T : (pm, ts) ∈ F}.

Sets of input and output places of a transition ts ∈ T are
defined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place
pm. When a place or a set of places contain a token it is
marked. A transition ts can be fired if all its input places are
marked. Firing of a a transition removes tokens from its input
places and puts one token in each output place. There can be
specified the initial marking M0, then the Petri net is defined
as a tupe:

PN = (P, T, F,M0). (2)

A. Colored Petri Net

A Petri net can be enhanced by assigning colors to places
and transitions [1], [6], [20]. In state machine (SM) colored
Petri net colors help to validate intuitively and formally the
consistency of all sequential processes covering the considered
Petri net. Each color recognizes one SM-subnet. The rules for
Petri net coloring are as follows [13], [22]:

• each place and transition must have at least one color,
• if the place has a color each of its input and output

transition must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same

set of colors,
• initially marked places cannot share exactly the same set

of colors,
• the number of different colors which are shared by the

initially marked places is equal to the total number of
colors.

B. Interpreted Petri Net

An interpreted Petri net is a Petri net enhanced with an
additional feature for information exchange [7]. Such a Petri
net is called interpreted Petri net or a colored interpreted Petri
net if both enhancements are applied. This exchange is made
by use of binary signals. Interpreted Petri nets are used as
models of concurrent logic controllers.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:
X is a set of input variables, X = {x1, . . . , xL},
Y is a set of output variables, Y = {y1, . . . , yN},
Z is a set of internal communication variables, typically

it is not used and Z = ∅.
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Fig. 1. Example of Petri net PN1.

The interpreted Petri net has a guard condition ϕs associated
with every transition ts. The condition ϕs is defined as the
Boolean function of some variables form sets X and Z. In the
particular case the condition ϕs can be defined as 1 (always
true). Now, transition ts can be fired if all its input places are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Conjunction ψm is associated with place
pm. ψm is an elementary conjunction of affirmation of some
output variables form the set Y . If the place pm is marked the
output variables from corresponding conjunction ψm are set
and other variables are reset.

C. Macro Petri Net

Macro Petri net is a Petri net where part of the net (subnet)
is replaced by one macroplace [7]. It allows to enhance Petri
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TABLE I
COLORS OF MACRO PETRI NET MPN1

Color Macroplaces Transitions Outputs
Ci Pi Ti Yi

C1 {mp1, mp3} {t2, t5} {yt1, yt2, yv1}
C2 {mp2, mp3, mp4, mp6} {t2, t5, t6 } {yt2, yv1, yv3}
C3 {mp5, mp6} {t6, t8} {yv2, yv3 ,ym}

nets with hierarchy [8] and it simplifies algorithms of coloring
and verification of Petri net. There are many classes of subnets
that could be replaced by macroplace, for e.g.:

• State machine subnets [6],
• Two-pole blocks [25],
• Parallel places [6],
• P-blocks [7].

These classes create to many possibilities of merging Petri
net into macro Petri net. For the synthesis purpose, the best
solution is application of mono-active macroplaces [25]. This
is macroplaces that have one input and one output and consist
of only sequential places. Only macro Petri nets with such
macroplaces will be used in this article.

The example of Petri net PN1 is given in Fig. 1a. This
net contains M = 11 places and S = 9 transitions. The
initial marking is defined as M0 = {p1, p3, p9}. The set of
input variables is X = {xn1, xn2, xf1, xf2, xf3, xf4} and
output variables is Y = {yt1, yt2, yv1, yv2, yv3, ym}. It can
be merged into macro Petri net MPN1 (Fig. 1b) and then
it is colored by I = 3 colors and covered by three SM-
macrosubnets C1, C2, and C3 (Tab. I). It can be noticed that
some places, eg. mp3 or mp6, and some transitions, eg. t2
or t8, are colored by more than one color and they belong to
several SM-macrosubnets.

III. IDEA OF SYNTHESIS METHOD

The idea of proposed synthesis method is based on the min-
imal local states encoding of places together with functional
parallel decomposition of the Petri net-based logic circuit.
Places are encoded separately in every colored subset. Output
variables (names of particular microoperations) assigned to
places are placed in configured memories of FPGA. It leads
to realization of a logic circuit in two-level structure (Fig. 2),
where the combinational circuits (CCi) of first level are
responsible for generation of the excitation functions: where
Q = Q1∪Q2∪· · ·∪QI is the set of variables used to store the
codes of currently marked places. The memory of the circuit
is built from I concurrent colored D-type registers RGi which
hold a current state of each subnet. Here, i = 1, 2, . . . , I
is a number of color of SM-subnet in Petri net colored
by I colors. The second level decoders Yi are responsible
for generation of microoperations and they are implemented
using memory blocks. Their functionality can be described by
function:

Y i = Y i(Qi). (3)

Such approach allows to use logic elements and embedded
memory blocks available in modern FPGA devices in a bal-
anced way.
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Fig. 2. Logic circuit of Petri net.

Di = Di(X,Q), (4)

The entry point to the synthesis method is the colored inter-
preted macro Petri net. There are many algorithms of SM-
coloring Petri nets, for example, the one described in: [23],
[24]. The outline of synthesis process includes following steps:

1) Formation of subnets. The purpose of this step is to
extract subnets from the colored macro Petri net. Let
assume that the macro Petri net is colored with I
different colors. Let us start from the first color (i = 1).
All macro places colored by this color are expanded into
corresponding subnets and these subnets create the first
SM-subnet. Next subnets are created in a similar way.
All macroplaces, which have been previously selected
(and expanded) by already created colored SM-subnets
are replaced by double of macroplaces. The doubles
(clones) of these macroplaces appear in a new colored
SM-subnet and they do not have any output signals as-
signed. Other macroplaces (not previously selected) are
expanded into corresponding subnets and these subnets
appear n a new M-subnet. There can be several doubles
of macroplaces in one subnet but if some of them occur
in a sequence then they can be replaced by one double
of all macroplaces. The doubles are treated as normal
place in the next steps. The procedure of formations
of subnets expands each macro place only once. If any
macro place is colored by more than one color it is
replaced by its double in followings SM-subnets. In
comparison with method where the colored Petri net is
an entry point to the synthesis method [26], now, there is
required to apply procedure od macroplaces expansion
less times than procedure of places merging when Petri
net is considered. Now, also outputs are partitioned by
colors and each output belongs only to one SM-subnet.

2) Encoding of places. The purpose of this step is to assign
the shortest binary code to each place. The encoding
is done on minimal number of required bits. Places are
encoded separately in each SM-subnet. It is required to
use

Ri = dlog2 |Pi|e (5)

bits to encode them, where Pi ⊆ P ∪MPi is a set of
places in a subnet that was created based on the color
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Ci. MPi is the set of doubles added to this subnet. There
are used variables from set Qi ⊂ Q to store this code,
where Q = {q0, . . . , qR−1}, where

R =

I∑
i=1

Ri (6)

and Qi = {qρ−Ri , . . . , qρ−1}, where ρ =
∑i
ı=1Rı.

Places that belong to the initial marking set M0 get code
equal to 0. If the subnet does not include any place from
the initial marking set M0 the code equal to 0 should be
assigned to the double of macroplace that has replaced
such place.

3) Formation of conjunctions. Conjunctions describe
places, preconditions of transitions and place hold-
conditions. They are needed for easier creation of equa-
tions that describe digital systems (4). The conjunction
describing the place p consists only of affirmation or
negation of variables qr that are used to store the code
of this place. If the r-th bit of the code equals 0 then
negation is used and if it equals 1 then affirmation is
used. The characteristic functions describing the pre-
condition of transition t consists of place conjunctions
of input places to this transition (from all subnets) and
a guard condition ϕ assigned to this transition. The hold-
conjunction of place p consists of negation of the sum of
transition conjunctions of all its output transitions (from
all subnets) and its place conjunction.

4) Formation of logic equations. Logic equations describe
functions (4) of combinational circuits CCi. They create
the base for D flip-flop equations, which are built from
conjunctions describing preconditions of transitions and
place hold-conjunctions. If the variable qr is set to 1 in
the code of the place p then the sum of corresponding
variable Dr consists of transition conjunctions of all its
input transitions and the place p hold-conjunctions.

5) Formation of memory contents. The memory content can
be described as a table or as equations according to the
system (3). There is required to create I such tables. The
table consists of two columns. First column is an address
and it is described by variables qr ∈ Qi. The second
column is an operation. The operation is represented by
output variables form the set Y i ⊆ Y . Here, the set Y i

consists only of variables yn that are under control of
the subnet colored by the color Ci. It means, they are
in elementary conjunctions ψ that are associated with
the places belonging to the set P i. In each line of the
table, there should be placed only these variables yn
that are in elementary conjunction ψ that is associated
with the place represented by address from the first
column of this line. The other way to describe this
memory is to create one logic equation to describe each
output variable. It describes output variable as a sum
of place conjunctions of the places corresponding to the
elementary conjunctions ψ that contain corresponding
output variable.

6) Formation of logic circuit and implementation. This step
describes the rules of creation of the Petri net HDL

e n t i t y c c i i s
port (X : in STD LOGIC VECTOR( L−1 downto 0) ;

Q : in STD LOGIC VECTOR(R−1 downto 0) ;
D : out STD LOGIC VECTOR( Ri−1 downto 0)

) ;
end c c i ;
a r c h i t e c t u r e c c i a r c h of c c i i s

s i g n a l p : STD LOGIC VECTOR(1 to M) ;
s i g n a l mp : STD LOGIC VECTOR(1 to Mm) ;
s i g n a l t : STD LOGIC VECTOR(1 to S ) ;
s i g n a l hp : STD LOGIC VECTOR(1 to M) ;
s i g n a l hmp : STD LOGIC VECTOR(1 to Mm) ;

begin
p ( 1 ) <= . . . ;
. . .

mp ( 1 ) <= . . . ;
. . .
t ( 1 ) <= . . . ;
. . .
hp ( 1 ) <= . . . ;
. . .

hmp ( 1 ) <= . . . ;
. . .

D( 0 ) <= . . . ;
. . .

end c c i a r c h ;

Fig. 3. Template of combinational circuit in VHDL.

e n t i t y RGi i s
port (CLK : in STD LOGIC ;

RES : in STD LOGIC ;
D : in STD LOGIC VECTOR( Ri−1 downto 0) ;
Q : out STD LOGIC VECTOR( Ri−1 downto 0)

) ;
end RGi ;
a r c h i t e c t u r e RGi arch of RGi i s
begin

p r o c e s s (CLK, RES) begin
i f RES= ’1 ’ then

Q <= ( o t h e r s => ’ 0 ’ ) ;
e l s i f (CLK’ e v e n t and CLK= ’1 ’ ) then

Q <= D;
end i f ;

end p r o c e s s ;
end RGi arch ;

Fig. 4. Template of register in VHDL.

model and its implementation into FPGA device. Here
is applied a bottom-up approach. Conjunctions of places
and transitions can be described using standard bit-
wise operators. Then logic equations can be described
with the use of these conjunctions using continuous
assignments as well as bit-wise operators. There should
be created a separate module for each circuit CCi with
inputs X and Q and outputs Di (Fig. 3). The register
RGi should be described as Ri-bits D-type register with
an asynchronous reset (Fig. 4). The typical synthesis
template can be used [27]. Each memory Y i can be
described as a process with the case” statement (Fig. 5).
As, the embedded memory blocks are synchronous, the
sensitivity list of this process includes clock signal. The
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e n t i t y y i i s
port (CLK : in STD LOGIC ;

RES : in STD LOGIC ;
Q : in STD LOGIC VECTOR( Ri−1 downto 0) ;
Y : out STD LOGIC VECTOR( Ni−1 downto 0)

) ;
a t t r i b u t e bram map : s t r i n g ;
a t t r i b u t e bram map of y i : e n t i t y i s ‘ ‘ yes ’ ’ ;

end y i ;
a r c h i t e c t u r e yi mem of y i i s
begin

p r o c e s s (CLK) begin
i f (CLK’ e v e n t and CLK= ’0 ’ ) then

i f RES= ’1 ’ then
Y <= . . . ;

e l s e
case Q i s

when . . . => Y <= . . . ;
. . .
when OTHERS => Y <= . . . ;

end case ;
end i f ;

end i f ;
end p r o c e s s ;

end yi mem ;

Fig. 5. Template of microoperation decoder in VHDL.

reset has to be realized as a synchronous one because
typical memory blocks do not support any asynchronous
control signal. To ensure that such a described module
could be synthesized as a memory block it is required
to set the value of the special synthesis directive. The
syntax of this directive depends on FPGA vendor. The
presented template (Fig. 5) include such directive for
Xilnix devices. The top-level module should describe
connections of all modules according to the block
diagram presented in Fig. 2. Additionally the global
reset signal is connected to reset inputs of registers and
memories. The global clock signal is connected to the
clock inputs of registers and memories. The edge that
trigs the memories has to be opposite to the edge that
trigs the registers. Operations are generated during only
one clock cycle [19]. The created model of logic circuit
can be passed into third-party synthesis tool.

IV. EXAMPLE OF METHOD APPLICATION

The method of Petri net synthesis, described in the previous
section, is illustrated by its application on macro Petri net
MPN1 (Fig. 1b). The Petri net PN1 (Fig. 1a) describes control
process of industrial mixer of aggregate content and water
(Fig. 6) [28], [29]. Outputs of the controller are connected into
valves of tanks and engine of mixer. Inputs gives information
about state of tanks, scale, timer and flow meter.

The macro Petri net MPN1 is colored using three colors,
and such colored macro Petri net can be an entry point to the
synthesis method.

Firstly, subnets have to be formatted (step 1.) The first SM-
subnet (Fig. 7) consists of expanded all macroplaces colored
by color C1. The second one (Fig. 7) has one double of
macroplace dmp1. This double of macroplace replaces the
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TABLE II
RECEIVED PARTITIONS OF PETRI NET PN1

Color Places Transitions Outputs
Ci Pi Ti Y i

C1 {p1, p2, p4, p5, p6} {t1, t2, t3, t4, t5}{yt1, yt2, yv1}
C2 {p3, dmp1, p7, p10, p11}{t2, t5, t6, t7, t8}{yv3 ,ym}
C3 {p9, p8, dmp2} {t6, t8, t9} {yv2}
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Fig. 7. Extracted subnets of macro Petri net MPN1.

macroplace mp3 because this macroplace have been already
expanded in the first subnet. Other macroplaces (mp2 and
mp4) are expanded in the second SM-subnet. There is also
created one double of macroplace dmp2 in the third subnet
(Fig. 7) and it replaces the macroplaces mp6. Obtained subnets
combine macro Petri net MPN1 with Petri net PN1 (Tab. II)
and they are shown in Fig. 7. It has to be mentioned that
output signals are now only under control of one SM-subnet.

Then, the places could be encoded (step 2.) It is required
to use R1 = 3, R2 = 3, and R3 = 2 bits, according to (5),
to encode all places. And possible encoding of these places is
shown in Tab. III. As, M0 = {p1, p3, p9}, places p1, p3, and
p9 receive codes equal to 0.

When encoding is finished conjunctions can be created (step
3.) The place conjunctions are created on the base of the place
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TABLE III
ENCODING OF PLACES OF SM-SUBNETS

Color C1 Color C2 Color C3

Place Code Place Code Place Code
q2q1q0 q5q4q3 q7q6

p1 000 p3 000 p9 00
p2 001 dmp1 001 p8 01
p4 010 p7 010 dmp2 10
p5 011 p10 011
p6 100 p11 100

codes. For the Petri net PN1, they are denoted as:

p1 = q2 ∧ q1 ∧ q0,
p2 = q2 ∧ q1 ∧ q0,

. . . ,

dmp2 = q7 ∧ q6.

Each Precondition of the transition is created as conjunction.
This conjunction itself consists of conjunctions of transition
input places and of a transition condition. They are denoted
as:

t1 = p1 ∧ xn1,
t2 = p2 ∧ p3,

. . . ,

t8 = p11 ∧ dmp2 ∧ xf3,
t9 = p9 ∧ xf2.

Each place hold-conjunction is created as conjunction. This
conjunction itself consists of negation of sum of all conjunc-
tions of transitions of output places and of a place conjunction.
They are denoted as:

hp1 = t1 ∧ p1,
hp2 = t2 ∧ p2,

. . . ,

hmp2 = t8 ∧ dmp2.

Next, logic equation describing combinational circuits can
be formed (step 4.) There have to be created equations for each
Dr variable. For example, the equation for D0 is denoted as:

D0 = t1 ∨ hp2
∨ t3 ∨ hp5.

As the variable q0 is equal to 1 in the code of places p2,
and p5 the sum of equation D0 consists of all input transition
conjunctions of these places. In this case they are: t1, and
t3. Additionally, there has to be added hold-condition for all
places if the place code has to be stored in register for longer
period than one clock cycle. In the similar way there are
formed remaining equations for D1 to D7. Of course, these
equations can be minimized after putting conjunctions instead
of corresponding variables. But this manipulation will be done
automatically during synthesis and implementation process by
third party CAD tools.

TABLE IV
OPERATION MEMORIES TABLES OF PETRI NET PN1

Memory Y 1 Memory Y 2 Memory Y 3

Address Operation Address Operation Address Operation
q2q1q0 yt1yt2yv1 q5q4q3 yv3ym q7q6 yv2
000 100 000 00 00 1
001 000 001 00 01 0
010 001 010 00 10 0
011 010 011 01
100 001 011 10

TABLE V
PARAMETERS OF LOGIC CIRCUIT OF PETRI NET PN1

PN PN-MOs
Number of logic equations 17 8
Number of Flip-Flops 11 8
Memory bits – 52

Then, contents of operation memories can be formed (step
5.) There is required to create separate table for each SM-
subnet. In case of Petri net PN1 there are presented three such
tables which are shown in Tab. IV.

Finally, the logic circuit can be built (step 6.) In our case it
was described in VHDL using presented templates (Figs. 3–
5). But in similar way it can be also described with the use of
Verilog. The top-level module (Fig. 8) was drew using block
diagram environment of Active-HDL. The key parameters
of the received logic circuit are shown in the column PN-
MOs in Tab. V. For the comparison purpose, the parameters
of logic circuit obtained as a result of standard method of
synthesis oriented on the places are shown in the column PN.
The standard method requires more logic equations because
it is necessary to create one equation per each place and
one equation per each output. Proposed method reduces the
number of those expressions. Now, there is required to create
logic equation only for excitation functions because minimal
encoding of the places has been applied and there is no need
of creations output equations because they are generated by
distributed memories.

The simulation of whole design was also preformed in
Active-HDL. The sample results (Fig. 9) shown one cycle of
whole mixing process.

V. SUMMARY

The method of synthesis of application specific logic con-
trollers into FPGAs with embedded memory blocks was pre-
sented in this article. The Petri net as graphical representation
of algorithm [3], [29]–[31] is used as entry point to the
synthesis method. The logic circuit is obtained by application
of the architectural decomposition methods [18], [32]. There
are implemented separate blocks to generate logic equations
for each subnet and to generate outputs of each subnet. Then
the special method of logic synthesis is proposed. The digital
design is based on minimal encoding of places in each subnet
separately. As the output functions are extracted to autonomic
blocks they can be implemented as concurrent embedded
memory blocks. It leads to balanced usage of different kinds
of logic resources of FPGA device. The presented method is
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Fig. 8. Top-level module of Petri net PN1.

Fig. 9. Simulation of Petri net PN1.

fully automated and it could be easily integrated with design
tools in CAD system.

The method was illustrated by a simple example, which
shows the outline of the proposed method. It is dedicated to
highly concurrent Petri nets with a large number of inputs
and outputs. It gives special benefits when output equations
are complicated and excitation functions has high number of
arguments comparing with application of standard method of
synthesis.

The application of macro Petri net as an entry point to the
synthesis method allows to simplify the process of extracting

SM-subnets. The state encoding based on separated SM-
components is presented, among the others in [33] and in
several subsequent papers. Such kind of procedures were
also proposed in several early papers related to parallel con-
troller design [7], [16]. The main disadvantage of the method
presented in [33] is that the codes of Petri net places can
only recognize the current local states of this Petri net and
consequently its global state. They cannot be used to determine
the next states of the petri net. Unfortunately, the characteristic
functions of some places are represented as disjunctions of
conjunctions of encoding variables. Different methods and
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strategies of the parallel decompositions of safe Petri net SM-
components can be found in [6], [8], [23], [24].
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[6] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=24143

[7] A. Karatkevich, Dynamic Analysis of Petri Net-Based Discrete Systems,
ser. Lecture Notes in Control and Information Sciences. Berlin:
Springer-Verlag, 2007, vol. 356, DOI: 10.1007/978-3-540-71560-3.

[8] J. Esparza and M. Silva, “On the analysis and synthesis of free choice
systems,” in Advances in Petri Nets 1990, ser. Lecture Notes in Computer
Science, G. Rozenberg, Ed. Berlin/Heidelberg: Springer-Verlag, 1991,
vol. 483, pp. 243–286.

[9] K. Barkaoui and M. Minoux, “A polynomial-time graph algorithm
to decide liveness of some basic classes of bounded Petri nets,” in
Application and Theory of Petri Nets, ser. Lecture Notes in Computer
Science, K. Jensen, Ed. Berlin/Heidelberg: Springer, 1992, vol. 616,
pp. 62–75, DOI: 10.1007/3-540-55676-1 4.

[10] A. Karatkevich and T. Gratkowski, “Analysis of the operational Petri nets
by a distributed system,” in Proceedings of the International Conference
on Modern Problems of Radio Engineering, Telecommunications and
Computer Science TCSET’04, Lviv Polytechnic National University.
Lviv, Ukraine: Lviv, Publishing House of Lviv Polytechnic, 2004, pp.
319–322.
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