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Abstract—Due to the process of network convergence, the
variety of types of traffic transmitted over a single medium
increases steeply. This phenomenon can be handled by the
existing networking structure although the protocols that are
used and, especially, the underlying routing protocols need to
be improved. The problem of finding the shortest path on the
Internet can no longer be easily defined as there is an increasing
number of different characteristics to describe a point-to-point
link. The definition of the shortest path may differ for different
traffic types. Therefore, in the mathematical models used to solve
the modern routing problems multiple criteria must be taken
into account. One of the interesting classes of the optimization
problem is the problem of finding the solution that is minimized
against one of the criteria under certain constraints with regard
to the others. In this paper, two algorithms solving this kind
of problems are presented and compared with a new solution
proposed by the authors.
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I. INTRODUCTION

MODERN telecommunications networks tend to con-
verge towards one single multi-purpose communica-

tion layer that conveys traffic of an increasing number of
different network services, such as IPTV (IP Television) or
VoIP (Voice over IP). The traffic classification aware routing
(called the Quality of Service or QoS routing) may be easily
presented with the means of the mathematical models for
the multicriterial optimization [1], [2]. However, many of
the emerging problems are computationally complex and,
therefore, heuristic techniques for their solutions have been
proposed [3]–[9].

In [2], an extensive comparison of different routing prob-
lems and the models associated with them has been presented.
A differentiation between the link-, path- and tree- optimiza-
tion is proposed, which refers respectively to the optimizing
threshold criterion, or an additive criterion for the entire path
or tree (i.e. a subgraph in general). The link optimization
may be presented with the example of the flow optimization
as the flow through a given path is defined as the minimal
bandwidth over the set of its edges. The path optimization
is a model suitable for the classical routing problem, where
each of the edges of the result path additively builds up for
the ultimate cost. The tree optimization reflects the multicast
communication routing that consists in connecting a single
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transmitter – the root of the tree, with multiple receivers – the
tree’s leaves.

When solving the routing problem, in both unicast and
multicast cases, the cumulative cost of the result may be
either optimized or constrained. For instance, we may consider
a problem of minimizing the allocation cost of a given path.
To give an example of the constrained problem, we may
only want to obtain a route over which the end-to-end delay
does not exceed a limit suitable for our needs. In general,
we can describe each of the network’s links with more than
one property, in which case we introduce the multicriterial
optimization domain.

In our research we are investigating the class of the “Path-
Constrained Path-Optimization” (PCPO) [2] problems. We
focus on the case of optimizing a single criterion, while
constraining one or more others for the entire path. This kind
of problem reflects the QoS routing well since constrained
parameters are quite common in this domain. We can imagine
that we model the link’s bandwidth with one of the edge
metrics that we minimize, and then we consider several
constrained metrics such as: packet drops, bit error rate, jitter
and delay. In such case, the QoS traffic class is defined as a set
of the constraints for the aforementioned additional metrics.
The metrics that we consider here, both the minimized and the
constrained ones, are abstract – no QoS parameters have been
associated with them because of the technique that has been
chosen to determine the constraints for the simulated problems.
Because networks are randomly generated, the values of the
constraints depend only on the considered graph and the
routing problem. It may, however, be easily adapted to a real
life scenario if a real network is to be considered and the actual
QoS constraints are applied.

One of the techniques used to solve PCPO problems is
the Lagrangian relaxation (LR) [1]. It is worth noting that,
apart from minimizing the minimized criterion, it does not just
choose results that satisfy the constraints by just any measure.
It rather tends to pick the solution with the highest values
for the constrained metrics assuring at the same time that the
respective constraints are satisfied. This results in providing
the sharpest solutions with regard to applied constraints. One
of the main drawbacks is that in order to utilize the LR, the
Lagrangian dual problem (LD) [10] must be solved, which,
for the shortest path problems, has no analytical solution.
Numerous heuristic approximations have been proposed [3]–
[5], [11]. Some of them provide better (i.e. sharper) solutions
at the cost of poorer performance. On the other hand, the
algorithms of the least computational complexity tend to
provide solutions that are feasible, but farther from optimum.
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In the paper, the new LR-based algorithm is proposed that
enables obtaining better results than the above mentioned
algorithms.

The paper is divided into the following parts. In Section II,
the previous work in the field is briefly summarized. Section
III presents the formal representation of the PCPO problem.
Section IV describes the MLARAC algorithm emphasizing the
path substitution problem – one of the core sub-procedures of
the algorithm. The proposed simulation experiment is followed
by a discussion on the results in Section V. Section VI
concludes the paper.

II. PREVIOUS WORK

In the literature we can find algorithms solving the PCPO
problem [3]–[9]. Some of them utilize the LR whereas the
others rely on other multicriterial optimization means [3]–[5],
[8].

In [3] the H MCOP (Heuristic Multi-Constrained Optimal
Path) algorithm, a non-linear variant of the Lagrangian relax-
ation has been presented. It has later been improved in [4] as
the NLR MCP (Nonlinear Lagrangian Relaxation Multipath
Constrained Problem) algorithm. In both cases, a modified Di-
jkstra’s algorithm [12] is applied to the original problem, once
from the destination to the source and then from the source
to the destination. The latter pass utilizes the data collected
in the former one, thus allowing for a better prediction of the
best routes towards the destination. The prediction is, however,
a rough approximation that leads to obtaining results that are
optimized less as compared to the other algorithms. While
being very cheap with regard to the computational complexity,
which is O(nlogn+ knlog(kn) + (k2 + 1)m), the H MCOP
algorithm does not provide the most optimal solutions.

An interesting deviation from the H MCOP – the LBPSA
(Lagrangian Branch-and-bound Path Selection Algorithm) al-
gorithm – is presented in [5]. In this case, a two-step optimiza-
tion has been proposed as well, however only the first pass is
based upon a modified Dijkstra’s algorithm. The second pass is
a modified “breadth first search” algorithm that is interpreted
as a “Branch and Bound” (B&B) procedure [13]. One of
the important properties of the LR technique is that, despite
providing a result that is close to the optimum, it also provides
a relatively sharp lower bound for the optimized problem,
which is then utilized for the pruning in the B&B phase by
the LBPSA algorithm. The complexity of this algorithm is
O(nlogn+m+ n).

However, yet another approach to the PCPO problems
can be used. The MLARAC (Multidimensional LAgrange
Relaxation based Aggregated Cost) algorithm described in this
paper allows obtaining well optimized solutions in terms of the
obtained costs without a great increase in the computational
complexity.

In [11] the LARAC (LAgrange Relaxation based Aggre-
gated Cost) algorithm is presented. It utilizes the original,
linear LR technique and proposes a simple iterative way of
optimizing the LD problem. For the shortest path problems the
LD becomes a maximization of a concave, piecewise linear
function. The proposed solution is to repetitively intersect

linear functions associated with the intermediate results in
order to find better solutions at the acceptable cost of the
complexity of O(n2log4n). The drawback of the LARAC
algorithm is that it can only solve problems with only one
constrained parameter.

The LARAC algorithm has been already used as a base for
other routing algorithms, such as the MLRA presented in [14]
and [15]. It is, however, a multicasting algorithm and, like
LARAC, only considers a single constraint metric, i.e. it does
not solve the PCPO problems that are the focus of this paper.

In [16] the MLARAC algorithm, an extension to the
LARAC algorithm, is briefly introduced by the authors. In the
MLARAC algorithm, the LARAC algorithm has been adapted
to solving the multidimensional problem that arises as a result
of the introduction of additional constraints. The complexity
of this approach is O(m3n2log4n). It is higher than that of the
LARAC complexity by the m3 factor, which comes from the
necessity of solving a system of linear equations, though the m
– the number of the considered metrics – will usually be small
as only few of them are used to describe telecommunications
networks’ edges. The generalization of the LARAC algorithm
introduced a new sub-problem [16] – “the path substitution”.
In this paper, the authors propose an extended path substitution
study, whereas the comparison of the MLARAC algorithm
with HMCOP and NLRMCP is presented for the first time.

III. FORMULATION OF THE PROBLEM

We model a communications network by an undirected
graph G(V,E), where V is a finite set of nodes and
E ⊆ {(u, v) : u, v ∈ V } is a set of edges that represent
point-to-point links. Furthermore, we assume that every edge is
assigned a set of M numeric properties (metrics). Metrics are
real-valued functions (mi : E → R, i = 0, 1, ...,M − 1) and
reflect the cost of a given edge. A path in the graph G(V,E) is
defined as a sequence of k non-repeated nodes v1, v2, . . . , vk ∈
V such that for each 1 ≤ i < k an edge (vi, vi+1) ∈ E
exists. For each of the metrics, except the first one, we define
a maximum value (constraint) Ci, i = 1, 2, ...,M − 1 that
cannot be exceeded in any connection path. The connection
path between a source s and terminal t nodes is defined as
p(s, t) that is a path v1, v2, . . . , vk, where s ≡ v1, t ≡ vk.

The cost of the path p is defined as:

cp =
∑
e∈p

m0(e), (1)

the problem of the multi-constrained path optimization
(MCOP) is reduced then to finding a path p∗(s, t) such that:

∀p∈P (s,t)cp∗ ≤ cp, (2)

where P (s, t) is a set feasible solutions, i.e. the set of all
the paths in graph G between nodes s and t that fulfil the
following condition:

∀i∈{1,2,...,M−1}
∑

e∈p(s,t)

mi(e) ≤ Ci. (3)
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IV. MLARAC ALGORITHM

A. Lagrangian Relaxation Technique

The MLARAC algorithm is based upon the general purpose
optimization technique of the Lagrangian relaxation. The use
of the LR in telecommunications has been presented in [1].

In the LR the constraints from Formula (3) are moved into
the target function by means of the linear combination. It is
assumed that if an appropriate set of weights λ1, λ2, ..., λM−1
is applied to the constrained metrics in the modified target
function, a good suboptimal solution may be found.

When applying the LR to the path finding problem, the
following formula is used to associate the linear function with
any path for a given vector of lambdas:

cp(λ) =
∑
e∈p
{m0(e) +

M−1∑
i=1

λi[mi(e)− Ci]}. (4)

The key to the LR is to obtain a set of optimal λ factors,
which is done by maximizing the following function:

L(λ) = min{cp(λ) : p ∈ P (s, t)}, (5)

which is the merit of the LD problem.
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Fig. 1. The overview of the one constraint Lagrangian Dual Problem.

In Fig. 1, an example case considering only one constraint
of the LR oriented analysis is presented. In Fig. 1(a), the (4)
functions for certain paths are presented as pA, pB and pC .
In Fig. 1(b), only the part obtained with the (5) function is
visible, which becomes the function Min(pA, pB , pC).

When multiple constraints are considered, each of them
adds another dimension to the problem, therefore, instead of
lines, planes or in general – hyperplanes are assigned to the
paths. Nevertheless, the L(λ) remains a concave piecewise
linear function and the same algebraic tools may be used in its
analysis. In an attempt at depicting the problem for a case with
two constraints determined, Figure 2 is presented in which the
increase of the complexity may be observed. In Fig. 2(a) the
(4) functions form planes pA, pB and pC in this case, and in
Fig. 2(b) the (5) function becomes a concave piecewise linear
surface Min(pA, pB , pC).
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Fig. 2. The overview of the two constraints Lagrangian Dual Problem.

B. Pseudo-code of the MLARAC Algorithm

The operation of the MLARAC algorithm is presented
in Algorithm 1. In this paper we focus on the Substitution
procedure which will be described in detail in the following
subsection.

C. Definition of the Path Substitution Problem

In the iterations loop (lines 15-22) we manage a set of paths
that are called “candidate paths”. Each of them is initially
obtained by solving the routing problem minimizing each of
the metrics individually (lines 2 and 6-8). Therefore for M
metrics we obtain M candidate paths. One of them is special
because it has been obtained by means of optimization against
the metric that is to be minimized, whereas the remaining
candidate paths have been found with regard to the metrics
that are constrained.

The first path is called the “exceeding path” as it may exceed
up to all of the constraints as it is only optimized against the
non-constrained criterion. It may actually exceed none of the
constraints, in which case it is chosen as an immediate optimal
solution without even entering the approximation loop (lines
3-4). The remaining paths are called “non-exceeding paths”
as each of them fulfills at least one constraint, in particular
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Algorithm 1 Multidimensional LARAC
1: procedure MLARAC(s, t, M, C)
2: ExPath← ShortPath(M [0], s, t)
3: if SatisfiesAll(ExPath) = True then
4: ReturnExPath
5: end if
6: for i := 1 to M do
7: UnPaths[i]← ShortPath(M [i], s, t)
8: end for
9: for i := 1 to M do

10: if CostForMetric(UnPaths[i], i) > M [i] then
11: ReturnFailure
12: end if
13: end for
14: BestUn← Failure
15: repeat
16: Lambdas← Inter(ExPath, UnPaths)
17: Path← ShortPath(AggrM(Lambdas), s, t)
18: if SatisfiesAll(Path) = True then
19: BestUn← Path
20: end if
21: Substitute(Path,ExPath, UnPaths)
22: until AllAgrCostsEqual(ExPath, UnPaths)
23: ReturnBestUn
24: end procedure

the one for which it has been obtained. If any of the non-
exceeding paths actually breaks its respective constraint it is
certain that no feasible solution exists (lines 9-13). Otherwise,
the set of the candidates is ready and valid and, therefore, the
approximation loop commences.

In every approximating iteration, another candidate path is
obtained by means of the intersection of the linear hyperplanes
associated with all of the current candidate paths (line 16),
which boils down to solving the following system of lin-
ear equations [16]:

M∑
i=1

λi(miu0 −mie) = m0e −m0u0

M∑
i=1

λi(miu1 −mie) = m0e −m0u1

...
M∑
i=1

λi(miuM −mie) = m0e −m0uM

(6)

where
• λi is the i-th element of the λ vector,
• mie means the i-th metric of the “exceeding path”,
• miuj means the i-th metric of the j-th path from the “non-

exceeding” paths set.
Because of the initialization technique used for the can-

didates, it is very likely that the intersection approximates
the optimal λ vector as each of the hyperplanes occupies a
slope associated with a different dimension, therefore they all
surround the peak of the “hyper-hill” that is being analyzed.
However, the first intersection may not find the optimal, or
even a feasible solution, therefore a new candidate is used in
the further iterations in place of one of the candidate paths
used prior to its determination.

In order to find an M − 1 dimensional intersection, M − 1
equations are needed and the M candidate paths are enough

to build such a linear system by putting the linear functions
associated with the non-exceeding paths on the left sides of
the equations and the function associated with the exceeding
path on the right side of every equation. After obtaining
a new candidate, one of the current paths from the set must
be discarded (line 21). If the new candidate exceeds all the
constraints, it is assumed that it must replace the exceeding
candidate, however if it fulfills some of the constraints then it
is not trivial to clearly associate it with any particular metric.

In order to find the best substitution technique, the following
strategies have been proposed and analyzed.

• The most expensive non blocking criterion (ENB)
The most expensive non blocking substitution variant
first finds all the metrics for which the constraints are not
broken by the candidate path. Then, from all of them one
that identifies the candidate best is chosen, i.e. the one
that associates it best with a given metric. This approach
stems from the assumption that all of the candidate paths
must be associated with a given criterion that should,
in general, secure an advantageous surround of the
analyzed “hyper-hill’s” peak. Choosing the metric of the
greatest value gives us the least steepness with regard to
a given dimension, therefore it is chosen to be the most
valuable for the approximation. However, if during the
intersection multiple paths are found that are suitable
only for a narrow range of the criteria, better and better
results for them shall be continuously discarded while
maintaining possibly poorly approximating paths for
the other criteria. Although this was the first approach
developed, others have been examined in order to clarify
any doubts that the application of the ENB technique
may have raised.

• Minimal sum of gradients (MSG)
This strategy is similar to ENB but with the assumption
of the association between the paths and the metrics
dropped. Every time a new candidate enforces discarding
one of the current approximating paths, the one is chosen
that has the lowest sum of the gradients. Since the slopes
only depend on the respective metrics, this is equivalent
to finding the one with the least sum of the metrics.
This strategy in general discards the paths associated
with the steepest functions which, because the function
is concave, should be considered as the farthest from the
peak.

• The random selection (RND)
In order to easily determine if the substitution has any
notable impact for the solution, the random selection
variant has been introduced. Every time a new candidate
must be placed in the current candidates’ set, a random
index is picked for the candidate path that is to be
discarded. The new candidate is then put in its place.
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(c) 100 nodes, the constrained metric 2

Fig. 3. The comparison of the different MLARAC algorithm variants for
100 nodes.

V. NUMERIC RESULTS

A. The Proposed Experiment

In order to evaluate the proposed algorithm numerous
simulation experiments have been conducted. The subject of
the evaluation were the average costs of the paths generated by

the algorithms for all of the three metrics. The costs of each of
the metrics were considered independently. The experiments
have been performed for a set of graphs representing networks
consisting of 100, 150 and 200 nodes, generated using the
Waxman’s algorithm [17]. The parameters α = 0.15 and
β = 0.2 were assumed for the algorithm, and the additional
metrics, the constrained ones, were randomly drawn from
a uniform distribution on the interval (1, 500).

For 500 graphs, 1000 paths were searched for in order to
achieve a satisfactory confidence intervals, i.e. two orders of
magnitude smaller than the obtained mean values.

Each routing task was chosen as a pair of nodes to be
connected. The method of choosing the input parameters –
the path’s constraints – was based on [4]. However, in this
case more than one metric was constrained, therefore the
original technique was generalized by the authors in order
to handle an arbitrary number of constrained metrics. The
modified technique is as follows. For each of the constrained
metrics a minimal and maximal applicable value are found.
The minimal value is obtained by performing the Dijkstra’s
shortest path finding algorithm with regard to a given metric
mi resulting in a path pmi

. Based on this method, a lower
bound for the given metrics’ constraint is defined. The maxi-
mal value is obtained from the Dijkstra’s shortest path finding
algorithm performed with regard to the minimized metric
(cost), resulting in a path pc. The constrained metrics of the
result are interpreted as the upper applicable bounds for the
constraints as for greater constraints the path minimizing the
base metric would be the optimal solution. The constraints
are linearly scaled within their respective ranges between the
lower and the upper bounds with a scalar value ∆. Therefore,
the formula for the i-th constraint Ci is the following:

Ci(∆) = mi(pmi) + ∆(mi(pc)−mi(pmi)). (7)

The simulations were performed for a set of ∆ factors
picked from the range between 0 and 1.

B. The Experiment Results

The results presentation has been broken into two parts. In
the first part only the different variations of the MLARAC al-
gorithm have been compared. In the second part the MLARAC
algorithm has been compared with the other mentioned algo-
rithms: the H MCOP and the LBPSA in order to illustrate
the thesis of the paper. Apart from the results the confidence
intervals were marked in the figures. For that purpose the
Student’s distribution was used with the confidence level of
95%. It may be observed that the intervals are of a size
comparable to the size of the symbols of the given results
and that they don’t overlap for the most of the cases.

The simulation results are presented in Figs. 3, 4, 5 and 6.
Figures 3(a), 3(b) and 3(c) present the results for the different
variants of the MLARAC algorithm, whereas Figs. 4, 5 and 6
present the comparison of the MLARAC algorithm with the
LBPSA and the H MCOP algorithms.

1) Performance evaluation of MLARAC variants: It turned
out that the chosen substitution technique had no significant
impact on the quality of the results. The RND variant was
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Fig. 4. The comparison of the MLARAC algorithm to others for 100
nodes.

proposed as a model for the extremely neutral with regard to
the constrained metrics. As it has been shown in Fig. 3, it
gives very similar results to the others that attempt at utilizing
the information obtained by means of the new candidate’s
analysis. For the cases of the bigger networks the absolute
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(a) 150 nodes, the optimized metric
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Fig. 5. The comparison of the MLARAC algorithm to others for 150
nodes.

values of the obtained average costs were higher, however,
the differences between them were as insignificant as in
Fig. 3. Therefore, the plots for the bigger networks have been
omitted. It is worth emphasizing that the average number of
the approximating iterations for a given category of problems
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Fig. 6. The comparison of the MLARAC algorithm to others for 200 nodes.

is usually small, which is in general favorable, but at the same
time does not allow for any refined techniques to expose their
advantages.

2) Comparison of MLARAC, LBPSA and H MCOP algo-
rithms: In Fig. 4 it can be seen that LBPSA and MLARAC
perform better than the H MCOP algorithm. They give paths

of the lower optimized cost and higher constrained costs,
i.e. their resource consumption is closer to the optimum as
they do not eagerly optimize the metrics that should only be
constrained. Of the two, MLARAC performs slightly better,
especially for greater values of the ∆ factor. All of the
algorithms result in paths of similar quality for the lower ∆
coefficient, which presents the range of the most difficult (i.e.
tighter constrained) problems.

When analyzing Figs. 5 and 6 it can be observed that a trend
of the overall increase in the costs of the resulting paths
emerges. The increase stems from the ability of finding longer
paths as the constraints get lower, thus the average cost of the
results increases. However, the relation between the results
of the particular algorithms and the proportion of the results
remains unchanged.

For both H MCOP and LBPSA algorithms’ performance
gain with regard to the constrained metrics decreases for the
higher ∆ faster than for the MLARAC algorithm. It is also
observable in Fig. 6(a) that for the bigger networks the average
optimized cost obtained with the LBPSA algorithm increases
towards very high values of ∆, whereas the performance of the
MLARAC improves linearly which allows for obtaining better
results for the problems for which the assumed constraints are
relatively close to the metrics of the path minimized against
the base metric.

VI. CONCLUSION

It has been shown in this paper that the method of finding
the intersection of the linear functions shown in [11] may
be generalized to the cases when more than one constraint
is defined. The difficulty encountered in [16] has been given
special attention and the conclusion has been drawn that the
choice of the substitution method has no significant impact
on the results. This may be due to the fact that the ap-
proximation loop is not performed many times, therefore not
enough repetitions were performed to expose any underlying
differences. The refined variant of the MLARAC algorithm,
in comparison to other similar ones, provides solutions of
the best quality. Firstly, the general optimality of the results
was analyzed by a comparison of the optimized costs of the
paths found with different algorithms. Secondly, the costs
with regard to the constrained metrics were expected to be
as high as possible since the higher the constrained costs the
smaller the unnecessary drain of the network resources. In
both cases the MLARAC algorithm led to the best results: the
lowest optimized costs and the highest constrained costs were
obtained.

Since the MLARAC algorithm is based upon a relatively
simple mathematical model and procedures, it may be consid-
ered an interesting choice for the base for the QoS-oriented
routing algorithms.
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APPENDIX A
ABBREVIATIONS (IN ORDER OF APPEARANCE)

• IPTV – Internet Protocol TeleVision
• VoIP – Voice over Internet Protocol
• PCPO – Path Constrained Path Optimization
• LR – Lagrangian Relaxation
• LD – Lagrangian Dual
• MLARAC – Multidimensional LARAC
• LARAC – LAgrange Relaxation based Aggregated Cost
• H MCOP – Heuristic Multi-Constrained Optimal Path
• NLR MCP – Nonlinear Lagrangian Relaxation Multi-

path Constrained Problem
• LBPSA – Lagrangian Branch-and-bound Path Selection

Algorithm
• B&B – Branch & Bound
• ENB – Most Expensive Non Blocking
• MSG – Minimal Sum of Gradients
• RND – RaNDom selection
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