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Abstract. In this paper we focus on the following form of the Lidstone BVP

k
x(Qk) (t) _ Z )\ix(Qkui) (t) — f(t, m(t),a:”(t), o 33(21672)@))
=1 '
2(29)(0) = 2(9) (1) = 0, s=0,...,k—1

We examine correlation between parameters \* € R and the kernel of differential opera-
ror that corresponds to the right hand side of the considered problem. Next we present a
method of inverting the mentioned operator. In consequence of this method, we obtain
two exact formulas that describe the corresponding Green’s functions and the form of
a solution with its derivatives in the case when f depends only on t.
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1. Introduction

In 1929 G.J. Lidstone introduced generalization of the Taylor’s series
approximating given function in neighborhood of not one but two points
(see [4]). This caused that the natural question on a general class of func-
tion that can be represented as Lidstone’s series arised. It turned out that
the seeking class was the one of entire functions of exponential type at
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most 7 (see [1]). The mentioned functions were looked for with the help
of differential equations with diverse boundary conditions. Throughout the
years evolution of this considerations leads to the following BVP

20 (1) = f (t,x(t),x"(t), La(2ee2) (t))

| | 1)
2(0)=2%)(1)=0, 0<i<k-1

The above problem was examined by many authors (see [2], [3], [5] and
references therein) and to honour the creator of its basic version it was
called Lidstone BVP. Popularity of (1) is a consequence of its applicableness
in many fields of science. For instance, if k£ = 2 then the problem describes
deformation of an elastic beam whose two ends are simply supported.

We will study (1) in the case when its right hand side fall into linear
and nonlinear part. Thus we will consider the BVP of the form

k
PO(t) = SN2 () = £ (40(8),2" (1), .., (1))

£2(0) =2 (1) =0, s=0,.. k-1

, (2)

where ()\1, . ,)\k) € R*. The main purpose of this paper is to present the
method of inverting differential operator that corresponds to the left hand
side of (2). We will present two formulas that describe clearly the form
of Green’s function. These formulas can be used to obtain a satisfying
approximation of a solution to (2).

2. Preliminaries

Definition 2.1 Point (\!,... \¥) € R* will be called k-dimensional eige-
nvalue iff the homogeneous problem

{ ac(%)(t) - /\lx(Qk_Q)(t) — A2 (%= () — ... = AL (t) = N (t) = 0

2290) =2®)(1) =0, fors=0...k—1,
(3)

has a nonzero solution. The set of all such n-tuples will be denoted by o*
Let us fix A',...,\¥ € R and define the set

3™ ([0,1],R)
- {u e ™ ([0,1],R) | u®9(0) = u®)(1) = 0,5 = 0,...,m — 1}.
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It is well-known that C3™ ([0,1],R) is a dense subset of L? ([0,1],R). Let
T (-;)\1,...,)\’“) :C2F ([0,1],R) — L%([0,1],R) be an operator given by
the formula

T (w;A'y. .. AF) i= DPu = A'DF =1y = N2DF =20 — ... = A" TDu — M,

where (Dx) (t) = ;—;x (t).We note that each element of the family
{T (A AF) | AL L. AF € R} s correctly defined. Furthermore,

=J{(\ . AF) €RF [ ker T (A1, AF) £ {0}}.

By using the methods of the spectral analysis and the theory of self-disjoint
and completely continuous operators, we prove that

[eS) k
T (us A, \F) = Z (—11)27r2)lc - Z A* (—pQﬂ'Q)k_S (ep ) 2 €p,
p=1 s=1

where e,(t) = \/2sin (prt),

Consequently, the uniqueness of coefficients of Fourier series gives us

k:UHp’

peEN

where

Hp::{()\l,... AF) eRF | (- Z)\S :o}.

It is evident that for each p € N the set H,, is a hyperplane in R¥. Further-
more,

(—p%ﬂj)z_l (—p%ﬂj)l:_2 —p%ﬂ'Q 1
1 e —2
det (p§7r2) (—p§7r2) —p§7r2 1
(ptet)' 7 (k) e
R R
= ()R ke g | ri oo (93) (r3) 20,
1opz o () )

The last condition implies the theorem:
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Theorem 2.1. Let s € N and py,ps,...,ps € N be such that p; # p;,
iF£j.

s < k, then =()_ . 1s atfine subspace 1n an

(1) If s < k, then W = (\;_; Hy,, # 0 Is affi b in R and
dimW =k — s.

(2) If s > k, then (\;_, H,, = 0.

Let us fix A = ()\1,...,)\’“) € oF. By the last theorem there exist
P1,P2,-..,0 € N such that A € Hy, p € {p1,...,m}, and A ¢ H,, for
p € N\ {p1,...,pi}. Thus

k
(—pzﬂz)k — Z/\S (—pzwz)k_S =0, forpe {p,...,m},
N (4)
k
() = SN () " £0, forpe Mipr,-.pi)
s=1

If we take u € ker ' (-; A1, ..., AF), then we obtain

k
S| (=) = oA (=) T (epu ey = 0.
s=1

pEN
This together with (4) imply

(ep,u) ;. =0 foreach p € N\ {p1,...,pi}.

Therefore,

u = Z (epy ) s €p. (5)

pE€{p1,.--,p1}

It is easy to see that if u has a form (5) then u € ker T’ (-; AL /\k). These
results lead us to the following conclusion.

Corollary 2.1.
The collection {e, | p € {p1,...,p1}} is a basis of ker T (-; AL ,/\’“) and
dimker T (; AL, ..., AF) =1

The observation above means that the dimension of the kernel equals
a number of hyperspaces that contain A.

Let us fix ()\1, ey )\"‘) ¢ o™and consider the following homogeneous
linear differential equation

1

() = N a2 () — o= ATl (8) — Aa(t) = 0. (6)
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We know that the set of solutions to the above equations is 2k-dimensional
linear space over R. This space will be denoted by D ()\1, . ,)\“). Further
consider the two IVPs connected with (6)

{xw(t) — Mz (@) — = AT () = Ata(t) = 0

: (7)
2290)=0, s=0,...,6—1

and

"

{ 2O () = N2 () — = A1 () - Ma(t) = 0

(8)
¢®)(1)=0, s=0,...,k—1

The sets of solutions to (7) and (8) are subspaces of D (A',...,\"). We
will denote them by Dy (/\1, . ,/\”‘) and D, (/\1, e /\"‘), respectively.
We start with the following basic and important lemma.
Lemma 2.1. dim Dy ()\1,...,)\“) = dim Dy ()\1,...,)\“) = Kk, further-
more D (A',...,A") = Do (A',...,A%) @ Dy (A',...,A%).
Proof.
Since (Al,...,A\%) & %, thus Do (AL,...,A%) N Dy (AL,...,\%) = {0}.
There exist numbers af € R 47 = 1,...,s such that v; =
= [O,ai,O,ag,...,O,ag], s = 1,...,k are linearly independent. Conside-
ring equivalent vector equation we obtain existence of solutions ¢s con-
nected with (6) such that ¢4(0) = v,. Linearly independence of the set
{vs | s =1,...,k} implies linearly independence of {¢s | s = 1,...,k}, thus
dim Dg (A,...,A%) > k. Analogously, we show that dim Dy (A!,...,\") >
> k. On the other hand, Do (A,...,A") @ Dy (A...,A%) C
C D()\l,...,)\“) therefore dimD()\l,...,)\“) = 2K. O

Assume that f € L ([0,1],R) and let us consider the following BVP.
(1) = M (@) — = hecaa () = M) = (), (9)

129(0) = 2@ (1) =0, s=0,...,5 1. (10)

It is special case of Lidstone BVP. Set x(.) := x (.) and convert the above
equation to the equivalent system of equations

o (t) = w1 (t)
iy (t) = wa(t)

Fhem() = 2201 (1) i
x’zﬂ_l(t) = Ao (t) + /\,{_13?2@) + ...+ /\1.%'2,{_2@) + f(t)
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After this changes (9) has the form

X'(t) = A X(t) = F(t), (1)
where
o(.) 0 1 0 0 0
() 0 0 1 0 0
X(.):= , A= ¢ )
x2ﬁ—2(-) 0 0 0 0 1
Tox—_1(.) Ae 00 Ay A1 0
0
0
F():=| :
AO
f()

By lemma 2.1, there exists a collection of linearly independent solutions of
the homogeneous equation (6) {a, | p=1,...,2x} such that

agis_)l(O):O fOI'p:1,...,/{,8:0,”‘,5_1’ (12)
and
Oééis)(]_):o fOI'p:]_,,,.,K/’S:O"”’K_]ﬂ (13)

It obvious that

i Oél(t) Oég(t) azﬁ_l(t) Oégﬁ(t) ]
o (t) oy (t) ey (t)  ab (1)
Alt) = : : : : . (14)
Sl () Y Sl () WP St € B il 1)
a7V o V@) o ol ol ()]

is a fundamental matrix for (11). Therefore, by elementary properties of
the Wronskian determinant

W (t) = det A(t) # 0, fort € [0,1]. (15)

Furthermore, we have

A~ (s)F(s)ds, (16)

<

I

=

>

+

B
o .
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where D = [Dy, ... ,DQH]T is constant. Set
t
R(t) i= [Ry(t),. .., Row ()" = D + /A—l(s)F(s)ds. (17)
0
Then (16) can be written in the form
X(t) = A1) - R(t) (18)

By (17) we get
AR/ (t) = F(t).

For each t € [0, 1] the last equation is a linear vector one in variable R’(t).
Since W (t) # 0, thus Crammer’s theorem implies that the system has

exactly one solution of the form

RU(t) = (- )'f()%dem() P=1.... %,

Matrix A; arises from A by deleting the i-th column and the 2x-th row.

From the last equalities we have

-~

Ry (

~

d
d

/1
Roj(t /
0
Condition (18) leads us to the conclusion that

1

2t Zagz;) ( / T

>

~1(s)

S~

(s)ds

Za(p) )/%detAgj(s)A(s)ds

+Za§’;>1 (£)Caj— 1+Za(p) (t)Cs;, p=0,.

et A2j—1(3) (S)ds + Czj—1, forj=1,...,kK

et Ayj(s)f(s)ds+ Cyj forj=1,...

2k — 1.
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It remains to find C; for that the above formula describes solution of (9)
with boundary conditions (10). By (10), (12) and (13), we get two systems
of equations

0 x(zs) Z (23) 0)Cyj, s=0,...,5—1

0 J?(QS) Z g?s)l CQJ 1, 8:0,...,11—1,
=1

that we can describe in the form

042(0) 0[4(0) 9y — 2(0) OZZH(O) CQ [0
a5 (0) ay (0) coe a5 (0) ay,.(0) Cy 0
ol 7P(0) of7P0) - ol Y(0) afP(0)] Lea] Lo
(19)

041(1) 043(1) a2ﬁ_3(1) CKQH_l(l) Cl 07
af (1) ag (1) sy 3 (1) ah, (1) Cs 0
A1) ol (1) e ol P) o) (1)) L -0(-)
20

Notice that both of the determinants corresponding to the above systems
are nonzero. Indeed, by using (15) with ¢ = 0, we obtain that

0 a2(0) 0 0 OZQR(O)
o (0) ’( ) a3(0) ah,1(0) a5 (0)
0 o (0) 0 0 oy (0)
3 3 3 3 3
orwo=| O D0 aP0) S () S ()
0 (2r=2) 0 0 0 (2»;—2) 0
(2r 1)( ) 52.% 1)(0) agQK—l)(O) giji—ll)(o) gi:i 1)(0)
a2(0) a2 (0) 0 e 0
a5 (0) 5,.(0) aj(0) ... ag,4(0)
alj(0) oy (0) 0 0
3 3 3 3
gnor.| 2O SO () af)1(0)
= 2) 0 P (%) 0 0
(2/{ 1)(0 é?:fl)(o) (2K 1)( ) gi/ill)(o)
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a2(0) e a2 (0) 0 e 0
al(0) ... al (0) 0 . 0
ag%/*”(o) a2 2)(0) 0 0
=sgnossgnoy - o (0) e al, (0) a’(0) T (0))
ol (0) o20) oV .. af) (0
af“"l)(o) S: 1)( ) (12n;1)(0) agin:'lm(o)
a1(0) o, 1(0)
z?,((g)) . 3?#583 3) (3)
g ok ay (0) cee Qg 1(0)
=sgn (0201) - : . ) . ) _ ) ;
WEN0) L ol Do) A2 D) ale g

where 01 and o9 are permutations given by the formulas

) 2 fori=1,...x
o1 (i) = . .
2t —1 -2k fori=rk+1,...,2K

and

) 21—1 fori=1,...K
o2 (i) =9 . . :
2t -2k fori=r+1,...,2K
Therefore the matrix of system (19) is a nonsingular one. In the same
way we show that the determinant of system (20) is also nonzero. Thus, it
follows from Crammer’s theorem that C; =0 for i =1,...,2k.
We have proved the following corollary.

Corollary 2.2. The p-th derivative, p = 0,...,2xk — 2 of any solution to
the problem (9)—(10) has the form

~

d
det Ayji(s)f(s)ds

+ Z a(iﬂ)

j=1

1
2P (t) = gy ( / et Ayi_1(s)f(s)ds
0

/H(p) - f(s)ds,
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where Hg"i)_’_'fm : [0,1] x [0,1] — R is given by the formula

Zag’fl )det Ay;_1(s) for 0<t<s<1
HEPE L (t,5) = . (21)
Za(p) (t) det Ay (s) for0<s<t<1

Each function H(p) " v« Will be called a Green’s function.

Lemma 2.2. Let (/\1, ey /\"‘) ¢ o". Then for eachp =0, ...,2Kk — 2 series

= —1L§J nm)?
Z H( )= ( )

is absolute convergent!.

Proof. Set a, := (—n?7?)" =" _ A% (=n?7?)""". Then

a=1

lan,| = n2*r2e (1

K )\OL
- ; (—n272)®

It is easy to see that there exists N such that for n > N, we have
1->r_ A (—n27r2)_a > 1/2. Thus

This implies that

a=1
Lemma, is proved. R
Hereinafter it will be assumed that f € L? ([0, 1],R). O

Vlz] :=max{n €Z|n <z}
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Theorem 2.2. The p-th derivative, p = 0,...,2x — 2, of any solution to
the problem (9)—(10) has the form

P& 2] ()P
(p) (=1) (n) t) sin (n7s) f (s) ds
O/Z S oy o) s () £ (9

n:l

sin (n7t) for p even

cos (nrt) for p odd Furthermore, the Green’s function

Where ¢, (t) = {

Hgﬁ) « is given by the formula

——pp(t)sin (n7s) .

D) > 1 15] nm)P
H( ) (8,5 :z:: —n?7?) E)H_ (/\0‘ ()—n27r2)

a=1

Both of these series is uniformly convergent.

Proof. Let us fix (Al,...,A“) ¢ o". If x is a solution of the problem

(9)—(10), then T (x;)\l, .. .,)\“) = f If we reason in the same way as in
Preliminaries, we get

N e o) e

thus
x(t) :Z/ [(—nzﬂz)“—z /\O‘(—nzﬂz)“_a] sin (n7t) sin (n7ws) é(s)ds

By lemma 2.2, series

Z [(—n27r2)n - Z A% (—nQWQ)H_a] sin (nart) sin (n7s) f(s)

n=1

is uniformly convergent. This implies that

t) :/Z [(_nzﬂz)“_z )\O‘(—nzﬂ-z)"‘_a] sin (n7t) sin (n7s) A(s)ds
0 a=1

n=1
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Lemma 2.2 and fact that the integral of a sum is the sum of the integrals
gives us the following equality

& “0)LE] oy .
0= [ GV 00 (1) sin(ns) F (5) ds,

sin (nmt)  for p even

cos (nt) for p odd ° Finally, corollary 2.2 implies that

where (1) = {

oo _ L J nm p
M 69 = 3 e () sin ()

This finishes the proof. O

Corollary 2.3. Function Hgﬁ)f.'}ﬁ is continuous for eachp = 0,...,2x — 2.

The analysis given above shows that in order to determine the function

Hi’i)jf’;n it is necessary to find the matrix A, what is equivalent to the

problem of finding a linearly independent solutions of (6) satisfying the
conditions (12)—(13).
Example 2.1 Let us consider the following BVP

21

According to the above considerations we have to find solutions of the
following equation
X' =A-X(0), (23)

corresponding to (11) and satisfying conditions (12)—(13). Then we have

010 0 0
00 1 0 0
A= o 0
000 ...01
000 00

The well known theory of linear differential equations follows that it is
sufficient to find the matrix exponential for A. To do that notice that
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A = aijli <i jcon = 6ij+1]1<; j<o,- Furthermore, for each p = 2,3,... we
get - -
 AP=1A — |, (P) —
AP = AP = [al? qum = [Bi4pilicijcon- (24)
2 .— [, () _ 2o
Indeed, we have A® := [aij Lsm‘szn’ where a;;" = )7, agay
(2)

= 1221 0i4+1,10141,5. It is easy to see that a;;” may be either zero or one.
The second condition is satisfied if i +1 =1 and [ + 1 = j. This im-
plies that ¢ + 2 = j. Thus A? := [6i+2,]1<i j<on- Let us fix p and sup-
pose that AP~! = [ag’_l)}
1<i,j<2xk
ag’) = 1221 ag’_l)alj = 1221 Oitp—1,10141,j. Furthermore ag.') € {0,1}
and o) = 1,ifi+p—1="1and [ +1 = j, therefore i +p = j. This implies
that AP = [6i4p ;] <; j<o,- and prove (24). Because of natural restriction
1 <i,j < 2k, it follows from formula (24) that the matrix AP is the zero

one for p > 2k. Therefore

= [6i+p-1,l1<i j<os- Then we have

=1
exp [(t — to) A := Y 3 (£ = t0) A = [ei]y ;o

=0
where
2 3
t—t t—t
eij = 6i,j + (t — to) 6i,j+1 + %61'71'4_2 + ( 6 0) 6i,j+3
(t —to)*" 1
+ ... Wéi’j—”ﬁ_l‘

Thus any solution of equation (23) with the initial condition X (t5) =
= [Cy,..., CQH_I]T, has the form

X(t)
[ (t—t0)® (t=t0)® (t—t0)* (t=t0)>* 2 (t—t0)?" ']
L (t—to) 5 5 5 ey T
_ 2 _ 3 _ 2k—3 _ 2k —2
0 1 (t —to) % % e (t(;ﬁlg)z (t(zt,glz)!
(t—t )2 (t—t )21474 (t—t )21{*3
0 0 L (t=t) == ... G =} g(l]
o 0 0 1 (t _y ) (t7t0 2k—5 t—tg 2r—4
0 (2r—5)! (2r—4)! :
: Cak—1
0o o0 0 0 0 1 (t—to) (t—to)®
0 0 0 0 0 0 1 (t —to)
K 0 0 0 0 0 0 ]
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Because of (12)—(13) only initial value conditions X(0) =
= [0, Cl, 0, 03 ce ,0, 025_1], X(l) = [0, Cl, 0, 03 e ,0, Czﬁ_l], are intere-
sting for us. This implies that A is a matrix of the form

o 3 (t—l)g 5 2k—1 (t—l)z"’”_l -
t(t=1) % 6 1tTo (55—1)1 (2r—1)!
1 1 +2 (t—1)2 4 1262 (t_1)2rc72
2 2 24 (2r—2)! (2r—2)!
tS t2m—3 (t_l)Zm—S
0 0 t (t-1) % @r—3)]  (@n-3)
2 2k —4 t—1 2k —4
A(t)= |0 0 1 1 5 T ((2,@)—4)!
0 0 0 0 o ... (t-1)
5 3
0 0 0 0 0 ... t (t—1)
L0 0 0 0 0o ... 1 ler |

In other words A(f) = [@i;(t)],<; j<o, Where

1 j—it1 . .
Ll > -1
{U—l“)’ )= for j=1,3,...,2k—1

~ (t) 0, j<i—1

Q4 = j—1 . ;
ﬁ(t—l)j 12 for j =2,4,...,2%
07 j<Z

According to established notation (see (14)) &;;(.) = ag-i_l)(.), where
for j = 21 — 1 and j = 2] we have respectively awg;_1(t) = %, ag (t) =

211
= %, [ = 1,2,...,k. The last expressions are solutions that are

the basis for Dg(0,...,0) and D; (0,...,0), respectively. Thus for p =
=0,1,...,2k — 1, we have

t2l7p71 +1

= forl > =
o, (6 = { e )
2

0 for [ <

t—1)2-p-1 417
a(p)(t): ((zlle)! for 1 > E2=
! 0 for | < 2EL

forl =1,2,...,k. Notice that if we multiply the 2s-th columns of A by —1
next add to (2s — 1)-th columns, s = 1,...,k, then we obtain a triangular
matrix that contains ones on the main diagonal. Therefore

W(t) =det A(t) =1, forte[0,1].
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If we denote G(P)F = H(()?.).bﬁ, forp=0,1,...,2k — 1. Then by (21) we get

( R t2l_p_1

2l —p—1)
1=[ 241 ( p—1)
Gl (t,s) o= N e Ve ;
2 ((21__)—_1)vdetAzl(8) for0<s<t<1
[ =[5 p=2F

det Agy_1(s) for 0<t<s<1

where [.]:R — Z, is given by the formula [z] := { [2] + L for 2 ¢ Z Fur-
T forx € Z

thermore corollary 2.2 implies that p-th derivative, p = 0,...,2k — 1, of
any solution to (22) has the form

1

2 (1) = / G0 (1, 5) F(s)ds. (25)

0

The Lidstone BVP is mathematical description of many physical and
mechanical phenomena, thus the knowledge about the form of the exact
solutions is very important from practical point of view. We have explained
that to start seeking the solution to (2) it is necessary to find the form of
the corresponding Green’s function first. We have given recipes how to do
it, therefore the results can be interesting for specialists from different part
of science.

Received August 31, 2012; Revised October 2012.
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M. JURKIEWICZ

Pewne aspekty dotyczace jawnych rozwiazan zagadnienia brzegowego
Lidstone’a

Streszczenie. Celem pracy jest rozwazenie pewnych aspektw egzystencjalnych do-
tyczacych zagadnienia brzegowego Lidstone’a, postaci

k
x(2k)(t) _ Z AP (2k—24) (t) =f (t7 gg(t),gg//(t)7 o 2(2k—2) (t))
=1 .
x(ZS)(O) — x(ZS)(l) =0, s=0,.. k=1

Jest widoczne, ze problem istnienia rozwiazan zalezy od czeéci liniowej powyzszego
problemu. Doktadniej dla pewnego zestawu parametrw \; operator rzniczkowy od-
powiadajacy lewej stronie przedstawionego problemu moze by¢ odwracalny lub nie.
W zwiazku z tym praca zostala podzielona na dwie czesci, w pierwszej skupiamy sie
na wyznaczeniu k-wymiarowego widma oraz opisaniu jego wlasnosci. Druga cze$é
jest poswiecona podaniu metod wyznaczania jawnej postaci funkcji Greena dla
powyzszego problemu w zbiorze rezolwenty wspomnianego operatora rzniczkowego.
Stowa kluczowe: problem brzegowy Lidstone’a, warto$¢ wlasna



