Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Problems of reduction of vibrations of structures with viscous and viscoelastic dampers
Języki publikacji
Abstrakty
Praca ma charakter przeglądowy i dotyczy przeglądu problematyki związanej z modelowaniem i analizą lepkosprężystych tłumików drgań oraz problemów analizy dynamicznej konstrukcji z zainstalowanymi wiskotycznymi i lepkosprężystymi tłumikami drgań. W pracy dokonano przeglądu literatury oraz krótko opisano przykładowe rozwiązania poruszanych problemów. Do najważniejszych problemów dynamiki konstrukcji z wiskotycznymi i lepkosprężystymi tłumikami drgań zaliczono problemy modelowania tłumików, identyfikacji parametrów modeli tłumików, opisu konstrukcji z tłumikami, wyznaczania charakterystyk dynamicznych konstrukcji z tłumikami drgań oraz optymalizacji położenia tłumików na konstrukcji.
The paper has a reviewing character and it is dedicated to review problems connected with modelling and analysis of viscoelastic dampers and to review problems of dynamic analysis of structures with viscous and viscoelastic dampers. In the paper, a review of literature together with the exemplary solutions of considered problems are shortly presented. The modelling of dampers, the identification of parameters of dampers' models, the description of structures with dampers, the determination of dynamic characteristics of structures with dampers and optimization of dampers' location on structure are main considered problems. Some general remarks are also formulated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
169--196
Opis fizyczny
Bibliogr. 63 poz., tab., wykr.
Twórcy
autor
- Politechnika Poznańska, Wydział Budownictwa i Inżynierii Środowiska, Instytut Konstrukcji Budowlanych, 60-965 Poznań, ul. Piotrowo 5, roman.lewandowski@put.poznan.pl
Bibliografia
- [1] B. W. Housner, L. A. Bergman, T. K. Caughey, A. G. Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. T. Soong, B. F. Spencer, J. T. P. Yao, Structural control: past, present, and future, Journal of Engineering Mechanics, 123, 1997, 897-971.
- [2] T. T. Soong, State-of-the-art-review. Active structural control in civil engineering, Engineering Structures, 10, 1988, 74-84.
- [3] T. T. Soong, B. F. Spencer, Supplemental energy dissipation: state-of-the-art and state-of-thepractice, Engineering Structures, 24, 2002, 243-259.
- [4] B. F. Spencer, State of the art of structural control, Journal of Structural Engineering, 129, 2003, 845-856.
- [5] M. D. Symans, M. C. Constantinou, Semi-active control systems for seismic protection of structures: A state-of-art review, Journal of Engineering Structures, 21, 1999, 469-487.
- [6] T. T. Soong, G. F. Dargush, Passive energy dissipation systems in structural engineering, Wiley, Chichester, 1999.
- [7] K. W. Min, J. Kim, S. H. Lee, Vibration tests of 5-storey steel frame with viscoelastic dampers, Engineering Structures, 26, 2004, 831-839.
- [8] A. D. Nashif, D. I. G. Jones, J. P. Henderson, Vibration damping, Wiley, New York, 1985.
- [9] C. J. Black, N. Makris, Viscous heating of fluid dampers under small and large amplitude motions: Experimental studies and parametric modeling, Journal of Engineering Mechanics, 133, 2007, 566-577.
- [10] N. Makris, Viscous heating of fluid dampers, Part I, Journal of Engineering Mechanics, 124, 1998, 1210-1216.
- [11] N. Makris, Y. Roussos, A. S. Whittaker, J. Kelly, Viscous heating of fluid dampers, II: Largeamplitude motions, Journal of Engineering Mechanics, 124, 1998, 1217-1223.
- [12] J. Cazenove, D. A. Rade, A. M. G. De Lima, C. A. Arujo, A numerical and experimental investigation on self-heating effects in viscoelastic dampers, Mechanical Systems and Signal Processing, 2011, doi:10.1016/j.ymssp.2011.5.004.
- [13] M. P. Singh, L. M. Moreschi, Optimal placement of dampers for passive response control, Earthquake Engineering and Structural Dynamics, 31, 2002, 955-976.
- [14] V. A. Matsagar, R. S. Jangid, Viscoelastic damper connected to adjacent structures involving seismic isolation, Journal of Civil Engineering and Management, 11, 2005, 309-322.
- [15] T. Hatada, T. Kobori, M. Ishida, N. Niwa, Dynamic analysis of structures with Maxwell model, Earthquake Engineering and Structural Dynamics, 29, 2000; 159-176.
- [16] M. P. Singh, N. P. Verma, L. M. Moreschi, Seismic analysis and design with Maxwell dampers, Journal of Engineering Mechanics, 129, 2003, 273-282.
- [17] W. S. Zhang, Y. L. Xu, Vibration analysis of two buildings linked by Maxwell model defined fluid dampers, Journal of Sound and Vibration, 233, 2000, 775-796.
- [18] T. S. Chang, M. P. Singh, Mechanical model parameters for viscoelastic dampers, Journal of Engineering Mechanics, 2009, 135, 581-584.
- [19] M. P. Singh, T. S. Chang, Seismic analysis of structures with viscoelastic dampers, Journal of Engineering Mechanics, 135, 2009, 571-580.
- [20] A. Palmeri, F. Ricciardeli, A. De Luca, G. Muscolino, State space formulation for linear viscoelastic dynamic systems with memory, Journal of Engineering Mechanics, 129, 2003, 715-724.
- [21] S. W. Park, Analytical modeling of viscoelastic dampers for structural and vibration control, International Journal of Solids and Structures, 38, 2001, 8065-8092.
- [22] R. Lewandowski, A. Bartkowiak, Dynamic characteristics of structures with viscoelastic dampers modeled by means of generalized rheological models, Proceedings of III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2011, M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.), Corfu, Greece, 26-28 May 2011.
- [23] T. S. Chang, M. P. Singh, Seismic analysis of structures with a fractional derivative model of viscoelastic dampers, Earthquake Engineering and Engineering Vibration, 1, 2002, 251-260.
- [24] N. Makris, M. C. Constantinou, Fractional-derivative Maxwell model for viscous dampers, Journal of Structural Engineering, 117, 1991, 2708-2724.
- [25] K. Ye, L. Li, J. Tang, Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative, Earthquake Engineering and Engineering Vibration, 2, 2003, 133-139.
- [26] R. Lewandowski, B. Chorążyczewski, Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers, Computers and Structures, 88, 2010, 1-17.
- [27] R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, Journal of Sound and Vibration, 330, 2011, 923-936.
- [28] K. Fujita, A. Moustafa, I. Takewaki, Optimal placement of viscoelastic dampers and supporting members under variable critical excitations, Earthquakes and Structures, 1, 2010, 43-67.
- [29] J. S. Leszczyński, An introduction to fractional mechanics, The Publishing Office of Czestochowa University of Technology, Czestochowa, 2011.
- [30] I. Podlubny, Fractional differential equations, San Diego, Academic Press, 1999.
- [31] Y. Yin, K. Q. Zhu, Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model, Applied Mathematics and Computation , 173, 2006; 231-242.
- [32] A. Lion, Thermomechanically consistent formulations of the standard linear solid using fractional derivatives, Archive of Mechanics, 53, 2001, 253-273.
- [33] J. S. Moita, A. L. Araujo, P. Martins, C. M. Mota Soares, C. A. Mota Soares, A finite element model for the analysis of viscoelastic sandwich structures, Computers and Structures, 89, 2011, 1874-1881.
- [34] N. Makris, M. C. Constantinou, Fractional-derivative Maxwell model for viscous dampers, Journal of Structural Engineering, 117, 1991, 2708-2724.
- [35] R. E. Perez, K. Behdinan, Particle swarm approach for structural design optimization, Computers and Structures, 85, 2007, 1579-1588.
- [36] N. Makris, Theoretical and experimental investigation of viscous dampers in applications of seismic and vibration isolation, PhD dissertation, State University of New York at Buffalo, 1992.
- [37] R. Lewandowski, Dynamika konstrukcji budowlanych, Wydawnictwo Politechniki Poznańskiej, Poznań, 2006.
- [38] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43, 2001, 235-286.
- [39] S. Adhikari, B. Pascual, Iterative methods for eigenvalues of viscoelastic systems, Journal of Vibration and Acouistics, 133, 2011, 021002-1–021002-7.
- [40] F. Cortes, M. J. Elejabarrieta, An approximate numerical method for the complex eigenproblem in systems characterized by a structural damping matrix, Journal of Sound and Vibration, 296, 2006, 166-182.
- [41] F. Cortes, M. J. Elejabarrieta, Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments, Computer Methods in Applied Mechanics and Engineering, 195, 2006, 6448-6462.
- [42] E. M. Daya, M. Potier-Ferry, A numerical method for nonlinear problems application to vibrations of viscoelastic structures, Computers and Structures, 79, 2001, 533-541.
- [43] R. Seydel, From Equilibrium to Chaos. Practical Bifurcation and Stability Analysis, Elsevier, New York, 1988.
- [44] L. Meirovitch, Dynamics and Control of Structures, Wiley, New York, 1990.
- [45] M. P. Singh, T. S. Chang, H. Nandan, Algorithm for seismic analysis of MDOF systems with fractional derivatives, Engineering Structures, 33, 2011, 2371-2381.
- [46] A. Schmidt, L. Gaul, Finite element formulation of viscoelastic constitutive equations using fractional time derivatives, Journal of Nonlinear Dynamics, 29, 2002, 37-55.
- [47] J. H. Park, J. Kim, K. W. Min, Optimal design of added viscoelastic dampers and supporting braces, Earthquake Engineering and Structural Dynamics, 33, 2004, 465-484.
- [48] S. H. Lee, D. I. Son, J. Kim, K. W. Min, Optimal design of viscoelastic dampers using eigenvalue assignment, Earthquake Engineering and Structural Dynamics, 33, 2004, 521-542.
- [49] A. K. Shukla, T. K. Datta, Optimal use of viscoelastic dampers in building frames for seismic force, Journal of Structural Engineering, 125, 1999, 401-409.
- [50] M. P. Singh, N. P. Verma, L. M. Moreschi, Seismic analysis and design with Maxwell dampers, Journal of Engineering Mechanics, 129, 2003, 273-282.
- [51] Y. Ribakov, G. Agranovich, A method for design of seismic resistant structures with viscoelastic dampers, The Structural Design of Tall and Special Buildings, 20, 2011, 566-578.
- [52] I. Takewaki, Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes, Wiley, Singapore, 2009.
- [53] Y. T. Chen, Y. H. Chai, Effects of brace stiffness on performance of structures with supplemental Maxwell model-based brace-damper systems, Earthquake Engineering and Structural Dynamics, 40, 2011, 75-92.
- [54] Z. Pawlak, R. Lewandowski, Optimization of viscoelastic dampers as described by the fractional rheological model, Proceedings of the Tenth International Conference on Computational Structures Technology, Valencia, Spain, CD-ROM , Paper 170, 14-17 September 2010.
- [55] Z. Pawlak, R. Lewandowski, Optimization of structures equipped with viscoelastic dampers modeled using the fractional order derivatives, Proceedings of III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2011, M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.), Corfu, Greece, 26-28 May 2011.
- [56] R. Lewandowski, Z. Pawlak, Optimal location of viscoelastic dampers represented by the classical and fractional rheological models, Chapter in a book entitled "Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications", eds. V. Plevris, Ch. Mitropoulou and N. D. Lagaros (w druku).
- [57] R. Lewandowski, Optimization of the location and damping constants of viscous dampers, Proceedings of the Ninth International Conference on Computational Structures Technology, B. H. V. Topping and M. Papadrakakis (eds.), Civil-Comp Press, Stirlingshire, Scotland, Athens, Greece, Paper 193, 2-5 September, 2008, 1-16.
- [58] R. H. Zhang, T. T. Soong, Seismic design of viscoelastic dampers for structural applications, Journal of Structural Engineering, 118, 1992, 1375-1392.
- [59] G. A. Lesieutre, E. Bianchini, Time domain modeling of linear viscoelasticity using anelastic displacement fields, Journal of Vibration and Acoustics, 117, 1995, 424-430.
- [60] G. A. Lesieutre, E. Bianchini, A. Maiani, Finite element modeling of one-dimensional viscoelastic structures using anelastic displacement fields, Journal of Guidance, Control and Dynamics, 19, 1996, 520-527.
- [61] D. J. Mctavish, P. C. Hughes, Modeling of linear viscoelastic space structures, Journal of Vibration and Acoustics, 115, 1993, 103-110.
- [62] D. F. Golla, P. C. Hughes, Dynamics of viscoelastic sructures - a time-domain finite element formulation, Journal of Applied Mechanics, 52, 1985, 897-906.
- [63] S. K. Sarangi, M. C. Ray, Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1-3 piezoelectric composites, Acta Mechanica, 222, 2011, 363-380.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0031-0012