PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic behaviour of a metallic cylinder striking a rigid target

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dynamiczne zachowanie się metalowego walca uderzającego w sztywną tarczę
Języki publikacji
EN
Abstrakty
EN
The initial-boundary value problem of the one-dimensional dynamical plastic deformation within the scope of large strain of a metallic cylindrical rod has been analytically solved in a closed form. The deformation of the rod has been caused by its normal impact on rigid target. The rod material in the deformed part is defined by incompressible, rigid-plastic, linear strain hardening model. A rigid-plastic, strain hardening material model provided better correlation with experimental data than perfectly-plastic model. The results presented in this paper have applicable values. Derived in the paper, closed analytical relations, written by elementary functions, give researchers and engineers insight into interaction of the physical parameters of the rod during the impact process and post-impact one.
PL
Rozwiązano analitycznie jednowymiarowe zagadnienie dynamicznej deformacji, z dużymi odkształceniami plastycznymi metalowego cylindrycznego pręta, uderzającego prostopadle w sztywną tarczę. Materiał pręta modelowano w strefie odkształceń plastycznych nieściśliwym ośrodkiem sztywno-plastycznym z liniowym wzmocnieniem. Sztywno-plastyczny model z liniowym wzmocnieniem zapewnia dobrą korelację wyników teoretycznych z eksperymentalnymi i w sposób istoty upraszcza rozwiązanie problemu. Zdaniem autorów, wyniki prezentowane w pracy mają aplikacyjne walory. Wyprowadzone zamknięte analityczne relacje, zapisane elementarnymi funkcjami dają badaczom i inżynierom bezpośredni wgląd we wzajemne oddziaływania między parametrami pręta podczas procesu zderzenia i po jego zakończeniu.
Rocznik
Strony
75--91
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] G. I. Taylor, The testing of materials at high rates of loading, J. Inst. Civ. Eng., 26, 1946.
  • [2] G. I. Taylor, The use of flat-ended projectiles for determining dynamic yield stress, I. Theoretical considerations, Proc. Roy. Soc., Series a, London, 194, 1948, 289.
  • [3] A. C. Whiffin, The use flat-ended projectiles for determining dynamic yield stress, II. Tests on various metallic materials, Proc. Roy. Soc., Series a, London, 194, 1948, 300.
  • [4] W. E. Carrington, M. L. V. Gayler, The use flat-ended projectiles for determining yield stress, III. Changes in microstructure caused by deformation at high striking velocities, Proc. Roy. Soc., Series a, London, 194, 1948, 323.
  • [5] J. D. Cinnamon, S. S. Jones, J. C. Foster, P. P. Gillis Jr, An analysis of early time deformation rate and stress in the Taylor impact test. Mechanical Behaviour of Materials, VI. Proc. of the Sixth Int. Materials Conf., eds. M. Jano. and T. Inouc, Kyoto, Japan, 1, July 1991, 337.
  • [6] N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1967.
  • [7] J. C. Foster, P. J. Maudlin Jr, S. E. Jones, On the Taylor test, Part I: A continuum analysis of plastic wave propagation, Proc. of the 1995 APS Topical Conf.: An Shock Compression of Condensed Matter, Seattle, Washington, August 1995, 291.
  • [8] J. B. Hawkyard, D. Easoton, W. Johnson, The mean dynamic yield strength of cooper and low carbon steel at elevated temperatures from measurements of the "mushrooms" of flat-ended projectiles, Int. J. Mech. Sci., 10, 1968, 929.
  • [9] J. B. Hawkyard, A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations, Int. J. Mech. Sci., 11, 1963, 313.
  • [10] I. M. Hutchings, Estimation of yield stress in polymers at high strain-rates using G. I. Taylors impact technique, J. Mech. Phys. Solids, 26, 1979, 289.
  • [11] G. R. Johnson, T. J. Holmquist, Evaluation of cylinder-impact test data for constitutive model constants, J. Appl. Phys., 64, 1988, 3901.
  • [12] S. E. Jones, P. P. Gillis, J. C. Foster, L. X. Wilson Jr, A one-dimensional two-phase flow model for Taylor impact specimens, J. Engr. Mat'ls. Tech., ASME, 113, 1991, 228.
  • [13] S. E. Jones, P. P. Gillis, J. C. Foster Jr, On the equation of motion of the undeformed section of a Taylor impact specimen, J. Appl. Phys., 61, 1987, 499.
  • [14] S. E. Jones, P. J. Maudlin, P. P. Gillis, J. C. Foster Jr, An analytical interpretation of high strain rate materials behaviour during early time plastic deformation in the Taylor impact test, Computers in Engineering, ed. G. A. Gabriele, 2, ASME, New York, 1992, 173.
  • [15] E. H. Lee, S. J. Tupper, Analysis of plastic deformation in a steel cylinder striking a rigid target, J. Appl. Mech., Trans. ASME, 21, 1954, 63.
  • [16] P. J. Maudlin, J. C. Foster Jr, S. E. Jones, An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Impact Engng, 19, 1997, 95.
  • [17] P. J. Maudlin, J. C. Foster Jr, S. E. Jones, On the Taylor test, Part III: A continuum mechanics code analysis of plastic wave propagation, Los Alamos National Laboratory report LA-12836-MS, November 1994.
  • [18] P. J. Maudlin, R. F. Davidson, R. J. Henninger, Implementation and assessment of the mechanical-threshold-stress model using the EPIC2 and PINON computer codes, Los Alamos National Laboratory report LA-11895-MS, September 1990.
  • [19] M. A. Meyers, Dynamic behaviour of materials, John Wiley and Sons, INC, New York-Chester-Brisbane-Toronto-Singapore, 1994.
  • [20] T. C. T. Ting, Impact of a nonlinear viscoplastic rod on a rigid wall, J. Appl. Mech. Trans. ASME, 33, 1966, 505.
  • [21] L. L. Wilson, J. W. House, M. E. Nixon, Time resolved deformation from the cylinder impact test AFATL-TR-89-76, November 1989.
  • [22] E. Włodarczyk, A. Starczewska, J. Materniak, J. Janiszewski, W. Koperski, Estimation of dynamic yield stress of shell steels by means of the Taylor impact test (in Polish), Bull, Acad., 1, 56, 2007, 113.
  • [23] S. E. Jones, P. J. Maudlin, J. C. Forster, An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Impact Engng, 19, 2, 1997, 95-105.
  • [24] S. Kaliski, Cz. Rymarz, K. Sobczyk, E. Włodarczyk, Waves, PWN, Warsaw, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1992.
  • [25] P. G. Shewmon (ed.), V. F. Zackay, Response of metals to high velocity deformation, Interscience Publishers, New York-London, 1961.
  • [26] J. A. Zukas, T. Nicholas, H. Swift, L. B. Greszczuk, D. R. Curran, Impact dynamics, John Wiley and Sons, INC, New York-Chester-Brisbane-Toronto-Singapore, 1981.
  • [27] H. E. Konokman, M. M. Coruh, A. Kayran, Computational and experimental study of high-speed impact of metallic Taylor cylinders, Acta Mech., 220, 2011, 61-85.
  • [28] D. J. Allen, W. K. Rule, S. E. Jones, Optimizing material strength constants numerically extracted from Taylor impact data, Experimental Mechanics, 37, 3, 1997.
  • [29] J. E. Field, S. M. Walley, W. G. Proud, H. T. Goldrein, C. R. Siviour, Review of experimental techniques for high rate deformation and shock studies, Int. J. Impact Engineering, 30, 2004, 725-75.
  • [30] P. J. Maudlin, G. T. Gray Iii, C. M. Cady, G. C. Karcher, High-rate material modeling and validation using the Taylor cylinder impact test, Phil. Trans. R. Soc. a, London, 357, 1999, 1707-29.
  • [31] S. M. Walley, P. D. Church, R. Townsley, J. E. Field, Validation of a path-dependent constitutive model for FCC and BCC metals using symmetric Taylor impact, J. Phys. IV, France, 10, 2000, 69-74.
  • [32] D. D. Radford, G. R. Willmott, S. M. Walley, J. E. Field, Failure mechanisms in ductile and brittle materials during Taylor impact, J. Phys. IV, France, 110, 2003, 687-92.
  • [33] P. D. Church, T. Andrews, B. Goldthorpe, A review of constitutive model development within DERA, [in:] Jerome D. M. editor, Structures under extreme loading conditions, PVP, vol. 394, New York: American Society of Mechanical Engineers, 113-20.
  • [34] D. Raftopoloulos, N. Davids, Elastoplastic impact on rigid targets, AJAA Journal, 5, 12, 1967, 2254-60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0031-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.