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Abstract. The initial-boundary value problem of the one-dimensional dynamical plastic deformation 
within the scope of large strain of a metallic cylindrical rod has been analytically solved in a closed 
form. The deformation of the rod has been caused by its normal impact on rigid target. The rod 
material in the deformed part is defined by incompressible, rigid-plastic, linear strain hardening model. 
A rigid-plastic, strain hardening material model provided better correlation with experimental data 
than perfectly-plastic model. The results presented in this paper have applicable values. Derived in 
the paper, closed analytical relations, written by elementary functions, give researchers and engineers 
insight into interaction of the physical parameters of the rod during the impact process and post-
impact one.
Keywords: dynamics, rod dynamics, Taylor impact, large strains, strain hardening

1. Introduction

The Taylor test was developed by G.J. Taylor and co-workers during the 1940s 
[1-4] as a method of estimating the dynamic strength of ductile materials in 
compression. The technique consists of firing a cylinder of the material of interest 
against a massive, rigid target. The dynamic flow stress can be then found by 
recovering the deformed cylinder, measuring its change of shape and using adequate 
formula. There has been much interest in impact testing and estimating dynamic 
yield stress since then [5-26].

The present view seems to be that Taylor’s theory fails to provide reliable yield 
stress estimates, especially for tests conducted at higher velocities of striking. For 
these reasons, many investigators are correlating their results with sophisticated 
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computer analyses which are capable of utilizing several complex forms of constitutive 
equations (e.g. [27, 28]). These programs can match the geometry of a post-test 
specimen with very high accuracy and give very reliable estimates for material 
properties. The drawback is that these programs are expensive and often require 
substantial amounts of time to execute.

The authors of paper [13] assert that simple engineering theories, such as 
that given by Taylor, still have considerable value. Such theories frequently give 
investigators insight into the interaction of physical parameters and their relationship 
to the outcome of the event. These interactions are, more often than not, difficult to 
ascertain from complex computer outputs. As a result, simple engineering theories 
often provide the basis for the design of experiments and are frequently used to 
refine the areas in which computing is to be done.

Recently there has been renewed interest in Taylor impact or its variants [29] 
as a method of testing constitutive relations [30, 31] for a wide range of materials. 
One reason for this technique is so useful in testing constitutive models in the 
wide range of strain rates is that it covers in one experiment from shock loading 
at the impact face to quasi-static loading at the rear [32, 33]. It also produces large 
strains at the impact face. 

Bearing in mind the above facts, the simple engineering method to determine 
dynamic mechanical characteristics of the rod during the striking process and 
post-impact process is presented in this paper. The rod material is approximated 
by rigid-plastic, linear strain hardening model. For such a type of material, closed 
forms of the analytical formulae for determining all dynamic parameters of the rod 
have been derived. The formulae are written by means of elementary functions. 
The theoretical results, obtained in this paper are compatible to experimental data. 
Similar problems were studied numerically in [15] and [34].

2. Formulation of the problem

Consider the initial-boundary value problem: a cylindrical flat-ended metallic 
rod strikes normally on a rigid flat target. The initial velocity of the rod is denoted 
by U, and its initial dimensions are: the length denoted as L and the cross-sectional 
area as F0. For enough large value of the velocity U, a portion of the rod placed at 
a target face is deformed plastically. As in other problems of plasticity, it may be 
permissible to neglect elastic strains in comparison with plastic strains, particularly 
within the scope of the large plastic strains. Bearing in mind this fact, it is assumed 
that the rod material is rigid-plastic, linear strain hardening, and incompressible 
into a region of plastic strains. Making this assumption is equivalent to supposing 
that the hind part of the rod, not reached by the plastic wave front at any instant, 
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behaves as a rigid body. This assumption leads to a considerably simplified solution 
of the plastic flow resulting from impact.

The conditions of the considered problem are as shown in Fig. 1. The rigid back 
part of the rod is approaching to target with the absolute velocity u. The plastic 
wave front is propagated away from the impact surface with the absolute velocity υ, 
leaving the material behind it at rest since elastic recovery is neglected. These are 
absolute velocities, and due to this the solution is not being carried out explicitly in 
terms of Lagrange co-ordinates. F and σ are the cross-sectional area and nominal 
stress just behind the plastic wave front, and F0 and σsd just ahead of it; σsd is the 
dynamic yield stress since the material ahead of the wave front is about to become 
plastic; ρ is the density of the rod material.

Fig. 1. Forms of deformation on which rigid-plastic solution is based: (a) during deformation, (b) after 
deformation
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The remaining symbols, shown in Fig. 1, denote:
xp is the momentary length of deformed part of the rod,
xs is the momentary length of undeformed part of the rod,
xt is the momentary displacement of the rear end of the rod,
Xt is the total momentary length of the rod.
Additionally, the index k denotes the final values of the quoted above parameters 

of post-impact, e.g. xpk is the final length of deformed part of the rod, and so on.
Neglecting compressibility in the plastic deformed material, the equation of 

continuity takes the form

	 ( ) 0 .u F F + = 	 (2.1)
	
This leads to the following expression for the longitudinal compressive strain 

behind the plastic wave front

	 0 .
F F u

F u




−
= =

+
	 (2.2)

Defining xs as the undistorted length at any instant, we have

	 ( ) .sdx
u

dt
= − + 	 (2.3)

	
Momentum balance across the wave front yields the equation

	 ( ) ,sdu u   + = − 	 (2.4)

because when the wave front passes through the distance ( )sdx dt u = − + , the 
velocity of this element becomes zero (u = 0).

The equation of motion of the rigid part of the rod is
 

	 .s sd
dux
dt

 = − 	 (2.5)

The stress-strain curve of the rod material is approximated by the linear 
expression (broken line in Fig. 2)

	 ,sd wE  − = 	 (2.6)

where Ew = constant is the modulus of linear strain hardening. It is assumed that 
the material behaviour is rate-independent, σ = σ(ε), and rigid-plastic, that is why 
elastic strains are negligible, similarly to [1-3].

By means of expression (2.6) one can approximate the stress-strain curves of 
high-strength alloy-steels [15], with accuracy sufficient for technical purposes.
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Such a formulated problem, completed by initial and boundary conditions (see 
sec. 3), has been solved in the analytical form in the next section of this paper.

3. Analytical solution of the problem

Straightforward algebraic transformations of relationships (2.2), (2.4), and 
(2.6) yield 

	 ,u c = 	 (3.1)	

	 (1 ) ,c = − 	 (3.2)

where

	 .wE
c


= 	 (3.3)

	
From formulae (3.1) and (3.2) it follows that

	 constant .u c+ = = 	 (3.4)
	

Then, integrating Eq. (2.3) and using of the initial condition xs = L for t = 0 give:

	 .sx L ct= − 	 (3.5)
	

So, the length of the rigid part of the rod xs decreases proportionally to time.

Fig. 2. Assumed static stress-strain curve in compression of Ni – Cr steels [15]; under consideration 
the rod material is represented by the broken line; σ and ε denote the nominal stress and the nominal 

strain, respectively



80 E. Włodarczyk, A. Jackowski, M. Sarzyński

In turn, Eq. (2.5) and relation (3.5), and the initial condition in the form u = U 
for t = 0, after integrating yield

	 ( ) ln 1 .sd c tu t U
c L



 = + −   	 (3.6)

	
From expressions (3.4) and (3.6) it follows that the propagation velocity of the 

plastic wave front υ(t) increases in course of time according to relation

	 ( ) ( ) ln 1 .sd c tt c u t c U
c L





 = − = − − −  
	 (3.7)

Therefore, according to (3.7) and (3.6), the plastic wave velocity υ increases from 
(c-U) to c.

In papers [1-3] it has been assumed that υ = constant during the whole impact 
process. It is far-reaching simplification and is not in accordance with reality.

Condition u(tk) = 0 and expression (3.6) determine the instant tk ending the 
striking process, namely

	
	

ln 1 ,k

sd

c t cU
L




 − = −  

or

	 1 exp .k
sd

L cUt
c





  
= − −     	 (3.8)

In agreement with relationships (3.5) and (3.8), the final length of rigid part 
of the rod is

	
	

exp exp .w
sk

sd sd

EcUx L L U


 

  
= − = −      	

(3.9)

	
Of formula (3.9), it follows that the final length xsk for given rod material  

(ρ, σsd, Ew), decreases exponentially with increasing the striking velocity U; if U→∞, 
then xsk→0. It is non-real case. Because real value of the velocity U is limited, usually 
U < c, the rigid part of the rod preserves (Fig. 3).

From formula (3.9), after transformation, we obtain

	
	 .

ln( )
w

sd
sk

E U
L x


 = 	 (3.10)

	
So, measuring the post-impact final length xsk in the deformed rod for given value 
of the impact velocity U one may to estimate the dynamic yield stress of material 
by means of relation (3.10). 
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Displacement of the end of the undeformed part rod is defined by formula

	

	

0 0

( ) ln 1

1 ln 1 .

t t
sd

t

sd

w

cx u d U d
c L

ct ct c tUt L
E L L L

 
  





  = = + − =    
    = − − − +        

∫ ∫

	

(3.11)

	
In turn, the length of the deformed part of the rod is determined by 

expression

	

	

[ ]
0

( ) ( ) ( ) ( )

1 1 ln 1 .

t

p s t

sd sd

w w

x t d L x t x t

c t c tc U t L
E E L L

  

 

= = − + =

      = + − + − −            

∫

	

(3.12)

	
The all quoted above parameters, defining the dynamics of the rod during 

striking, are expressed explicitly by means of analytical time-dependent elementary 
functions. Let x denote the Lagrangian coordinate aligned with the axis of the rod 
and having its origin in the impact plane (Fig. 1). Then, the Lagrangian coordinate, 
x, defining the place of plastic wave front on the plane (x, t) amount:

	 ( ) ( ) ,sx t L x t ct= − = 	 (3.13)
where

	
0 ; 0 .k kt t x ct≤ ≤ ≤ ≤

According to formulae (3.1) and (3.6), the strain ε is defined by the function

	
	

( )( )( ) ln 1 ln .sd sd s

w w

x tu t U ct Ut
c c E L c E L

 


 = = + − = +   	
(3.14)

	

Fig. 3. Steel cylinders after test [3]
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From analysis of relation (3.14) it follows that 

	
	 max (0) .wU EU

c
 


= = =

	
(3.15)

	
Differentiation of the function ε(t) with respect to t yields

	
	

( ) .
( )

sd sd

w w s

d c ct
dt E L ct E x t

 
= = − = −

−


	
(3.16)

	
It is seen that the absolute value of the strain rate,  , changes in the range

 
	
	 ( )min max .sd sd

w w sk

c ct
E L E x
 

  = ≤ ≤ =  

	 (3.17)

	
From expressions: (2.2), (3.1), (3.2), and (3.14) after simple transformations 

we obtain the formula defining the current diameter of the deformed part of the 
rod Dp(t), namely

	
	

1
2

0
0( ) 1 ln 1 ,

1 ( )
sd

p
w

D U ctD t D
c E Lt





−
  = = − − −   −   	

(3.18)

	
where D0 denotes the initial diameter of the rod.

The analysis of the function Dp(t) by means of formula (3.18) gives:
 

	
	

1
2

max 0( ) (0) 1 .p p L
UD t D D D
c

−
 = = = −   	 (3.19)

	
The maximal diameter Dpmax intensively increases as increases the striking 

velocity U, and for U→c is Dpmax→∞. It is non-real case, because earlier striking 
end of the rod is crumbled. This fact is corroborated by the experimental results 
(Fig. 3).

4. Example

Let us consider a uniform chromium-nickel steel rod of the initial dimensions, length  
L = 0.0127 m (0.5 in.) and the diameter D0 = 0.008636 m (0.34 in.). Mechanical 
parameters of the steel are as follows: the density ρ = 7800 kg/m3, the static 
nominal yield strength σs = R0.2 = 1800 MPa, and the strain-hardening modulus  
Ew = 3500 MPa. Assumed stress-strain curve in compression for this steel is depicted 
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in Fig. 2. The calculations were performed for the following values of the striking 
velocity: U = 196 m/s, U = 266 m/s, and U = 300 m/s using experimental results 
depicted in Fig. 4 [15].

Fig. 4. Shape of cylinders after Taylor test [15]. (All cylinders were originally: D0 = 0.008636 m (0.34 in.), 
L = 0.0127 m (0.5 in.))

Depicted in Fig. 4 dimensions of the photograms of the deformed cylinders 
are given in the scale of 1:0.24. The initial length of the cylinder is L= 5.3 cm in 
this scale.

Computational results of the selected parameters, characterizing dynamics of 
the tested steel rod during Taylor’s impact at some striking velocities are listed in 
Table 1.
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Table 1
Computational results of the selected parameters for chromium-nickel steel rod during Taylor’s 

test in assumed at time points t

t ·106 [s] 0 2 4 6 tk ⋅106 = 6.8

U
 =

 1
96

 m
/s

ct/L 0 0.105 0.211 0.316 0.358

xs /L 1 0.894 0.789 0.683 0.641

xt /L 0 0.027 0.045 0.055 0.056

xp /L 0 0.079 0.166 0.262 0.303

Dp /D0 1.189 1.132 1.076 1.022 1

ε = u/c 0.293 0.220 0.137 0.042 0

υ/c 0.707 0.780 0.863 0.958 1

max 0.293
4 1

min 10 [s ]ε − −⋅ 3.4765

4 1
max 10 [s ]ε − −⋅ 5.4192

[MPa]sdσ 2307

max [MPa]σ 3330

t ·106 [s] 0 2 4 6 8 tk ⋅106 = 8.23

U
 =

 2
66

 m
/s

ct/L 0 0.105 0.211 0.316 0.422 0.434

xs /L 1 0.894 0.789 0.683 0.578 0.566

xt /L 0 0.038 0.067 0.086 0.094 0.094

xp /L 0 0.068 0.144 0.231 0.328 0.340

Dp /D0 1.288 1.212 1.141 1.073 1.007 1

ε = u/c 0.397 0.319 0.232 0.132 0.015 0

υ/c 0.603 0.681 0.768 0.868 0.985 1

max 0.397
4 1

min 10 [s ]ε − −⋅ 3.6804

4 1
max 10 [s ]ε − −⋅ 6.5020

[MPa]sdσ 2442

max [MPa]σ 3832
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t ·106 [s] 0 2 4 6 8 tk ⋅106 = 8.94

U
 =

 3
00

 m
/s

ct/L 0 0.105 0.211 0.316 0.422 0.472

xs /L 1 0.894 0.789 0.683 0.578 0.528

xt /L 0 0.043 0.078 0.102 0.115 0.117

xp /L 0 0.063 0.133 0.215 0.307 0.355

Dp /D0 1.346 1.259 1.180 1.105 1.033 1

ε = u/c 0.448 0.370 0.282 0.181 0.063 0

υ/c 0.552 0.630 0.718 0.819 0.937 1

max 0.448
4 1

min 10 [s ]ε − −⋅ 3.7020

4 1
max 10 [s ]ε − −⋅ 7.0074

[MPa]sdσ 2456

max [MPa]σ 4024

In turn, Fig. 5 shows the calculated longitudinal compressive plastic strain ε versus 
independent variable (ct/L) for some selected values of the impact velocity U. 

After a Taylor test, the compressive strain ε in the plastic deformation zone of 
the rod decreases with a distance from the impact face. It has the maximum values, 
εmax = ε(0), at the impact face, which increases directly proportionally to the impact 

cont. Table 1

Fig. 5. The calculated plastic strain ε versus variable (ct/L) for some selected values of the impact 
velocity U
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velocity U (3.15). The strain ε(tk) = 0 at the interface between the deformed and 
undeformed sections of the rod, i.e. in the following cross-sections: xpk = 0.302L 
for U = 196 m/s, xpk = 0.340L for U = 266 m/s, xpk = 0.355L for U = 300 m/s.

Variations of the dimensionless absolute velocities υ(t)/c and u(t)/c versus the 
non-dimensional time ct/L for some selected values of the impact velocity U are 
depicted in Fig. 6. Figure 6 shows that displacement velocity of the rigid part rod u(t) 
monotonically decreases according to the logarithmic functions from the maximal 
value, umax = U, at the impact face (t = 0) and is zero at the interface between the 
deformed and undeformed sections of the rod at the instant t = tk (3.8). The plastic 
wave velocity υ(t), on the contrary to the velocity u(t), increases according to this 
some logarithmic function from the minimal value, υmin = υ(0) = c – U, at the contact 
face (t = 0) and reaches the maximum υmax = c at the instant t = tk (3.8).

Fig. 6. The changes of the relative absolute velocities υ(t)/c and u(t)/c versus (ct/L) for some values U

The variations of the non-dimensional length of the deformed part rod, xp(t)/L, 
versus non-dimensional time, ct/L, for some values of the impact velocity U are 
depicted in Fig. 7. As it can be seen, the dimensionless quantity, xp(t)/L, is zero at the 
impact face and increases to the maximal value ( ) /pk p kx x t L=  which reaches at the 
interface between the deformed and undeformed section of the rod at instant t = tk, 
namely: 0.302pkx =  for U = 196 m/s, 0.340pkx =  for U = 266 m/s and 0.355pkx =  
for U = 300 m/s. Note that together with the increase in the impact velocity U, the 
increment pkx∆  of the functions xp(tk)/L decreases to zero (broken line in Fig. 7). 
For U→c, the deformed end of the rod is being crushed during striking (Fig. 3).

The final shapes of the deformed rods after Taylor’s test obtained by means of 
theoretical computations for some values of the impact velocity U are depicted in 
Fig. 8. The obtained shapes of the deformed rods are conformable to experimental 
data presented in papers [3] and [15] (Fig. 4).
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5. Conclusions

The general conclusion from this study is that for plastic strains large compared 
with elastic strains, the rigid-plastic type of analysis provides a satisfactory and 
simple analytical method. For the rod with linear strain-hardening striking a rigid 
target (Taylor test), by means of this model, interesting results have been obtained 
in this paper, namely:

Fig. 7. The calculated dimensionless length xp(t)/L versus the variable ct/L for some values of the 
velocity U

Fig. 8. Calculated final shapes of the deformed rods after Taylor’s test for some values of the impact 
velocity U
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1.	 The longitudinal compressive strain ε in the plastic deformation zone of the rod 
monotonically decreases with a distance from the impact face. It has the maxi-
mum value

2.	
	
	 max (0) wU EU

c
 


= = = 	

at the impact face and is zero at the interface between the deformed and un-
deformed sections of the rod (Fig. 4).

3.	 The absolute value of the strain-rate changes during the striking process in the 
range

	
	 min max( ) .s s

w w sk

c ct
E L E x
 

  = ≤ ≤ =   	

4.	 The length of the deformed part of the rod xp is limited, and independently 
from a value of the impact velocity U it does not contain the whole rod. The 
length of the rigid portion of the rod amounts

	
	 exp .w

sk
sd

E
x L U





 
= − 

  	

5.	 For rigid-plastic with linear strain hardening material of the rod, the sum of 
absolute velocity of the plastic wave υ(t) and absolute velocity of the rigid part 
of rod u(t) is constant, namely

	
	 ( ) ( ) .wE

t u t c


+ = = 	

Numerical calculations placed in paper [15] corroborate this fact.
6.	 The diameter of the deformed part of rod reaches maximum in the cross-section 

x = 0 contacting with surface of the target, and is equal to

	
	

1
2

max 0( ) (0) 1 .p p L
UD x D D D
c

− = = = −  
	

At large striking velocity U ≈ c deformed end of the rod is crushed (Fig. 3).
7.	 By means of simple formula (3.10)

	
	 ( )ln

w
sd

sk

E
U

L x


 =
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one can estimate a value of dynamic yield strength for the given material  
(ρ, Ew) of the rod. For this purpose it is necessary to measure the parameter xsk 
of the rod after Taylor’s test at the given striking velocity U. 

8.	 For plastic strains large compared with elastic strains, the rigid-plastic type of 
analysis provides a satisfactory and simple analytical method. It gives theoretical 
results to be compatible with experimental data.

9.	R igid-plastic model of the rod material makes possible the extension of pre-
sented here analysis to the case of material with nonlinear strain hardening. 
We are going to consider this problem in the next paper.

Received April 04 2012, revised June 2011.

References

	 [1]	 G.I. Taylor, The testing of materials at high rates of loading, J. Inst. Civ. Eng., 26, 1946.
	 [2]	 G.I. Taylor, The use of flat-ended projectiles for determining dynamic yield stress, I. Theoretical 

considerations, Proc. Roy. Soc., Series a, London, 194, 1948, 289.
	 [3]	 A.C. Whiffin, The use flat-ended projectiles for determining dynamic yield stress, II. Tests on 

various metallic materials, Proc. Roy. Soc., Series a, London, 194, 1948, 300.
	 [4]	 W.E. Carrington, M.L.V. Gayler, The use flat-ended projectiles for determining yield stress, 

III. Changes in microstructure caused by deformation at high striking velocities, Proc. Roy. Soc., 
Series a, London, 194, 1948, 323.

	 [5]	 J.D. Cinnamon, S.S. Jones, J.C. Foster, P.P. Gillis Jr, An analysis of early time deformation 
rate and stress in the Taylor impact test. Mechanical Behaviour of Materials, VI. Proc. of the Sixth 
Int. Materials Conf., eds. M. Jano. and T. Inouc, Kyoto, Japan, 1, July 1991, 337.

	 [6]	 N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1967.
	 [7]	 J.C. Foster, P.J. Maudlin Jr, S.E. Jones, On the Taylor test, Part I: A continuum analysis of plastic 

wave propagation, Proc. of the 1995 APS Topical Conf.: An Shock Compression of Condensed 
Matter, Seattle, Washington, August 1995, 291.

	 [8]	 J.B. Hawkyard, D. Easoton, W. Johnson, The mean dynamic yield strength of cooper and 
low carbon steel at elevated temperatures from measurements of the “mushrooms” of flat-ended 
projectiles, Int. J. Mech. Sci., 10, 1968, 929.

	 [9]	 J.B. Hawkyard, A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid 
anvil, using energy considerations, Int. J. Mech. Sci., 11, 1963, 313.

[10]	 I.M. Hutchings, Estimation of yield stress in polymers at high strain-rates using G.I. Taylors 
impact technique, J. Mech. Phys. Solids, 26, 1979, 289.

[11]	 G.R. Johnson, T.J. Holmquist, Evaluation of cylinder-impact test data for constitutive model 
constants, J. Appl. Phys., 64, 1988, 3901.

[12]	 S.E. Jones, P.P. Gillis, J.C. Foster, L.X. Wilson Jr, A one-dimensional two-phase flow model 
for Taylor impact specimens, J. Engr. Mat’ls. Tech., ASME, 113, 1991, 228.

[13]	 S.E. Jones, P.P. Gillis, J.C. Foster Jr, On the equation of motion of the undeformed section of 
a Taylor impact specimen, J. Appl. Phys., 61, 1987, 499.



90 E. Włodarczyk, A. Jackowski, M. Sarzyński

[14]	 S.E. Jones, P.J. Maudlin, P.P. Gillis, J.C. Foster Jr, An analytical interpretation of high strain 
rate materials behaviour during early time plastic deformation in the Taylor impact test, Computers 
in Engineering, ed. G.A. Gabriele, 2, ASME, New York, 1992, 173.

[15]	 E.H. Lee, S.J. Tupper, Analysis of plastic deformation in a steel cylinder striking a rigid target, 
J. Appl. Mech., Trans. ASME, 21, 1954, 63.

[16]	 P.J. Maudlin, J.C. Foster Jr, S.E. Jones, An engineering analysis of plastic wave propagation in 
the Taylor test, Int. J. Impact Engng, 19, 1997, 95.

[17]	 P.J. Maudlin, J.C. Foster Jr, S.E. Jones, On the Taylor test, Part III: A continuum mechanics 
code analysis of plastic wave propagation, Los Alamos National Laboratory report LA-12836-MS, 
November 1994.

[18]	 P.J. Maudlin, R.F. Davidson, R.J. Henninger, Implementation and assessment of the mecha-
nical-threshold-stress model using the EPIC2 and PINON computer codes, Los Alamos National 
Laboratory report LA-11895-MS, September 1990.

[19]	 M.A. Meyers, Dynamic behaviour of materials, John Wiley and Sons, INC, New York-Chester-
Brisbane-Toronto-Singapore, 1994.

[20]	 T.C.T. Ting, Impact of a nonlinear viscoplastic rod on a rigid wall, J. Appl. Mech. Trans. ASME, 
33, 1966, 505.

[21]	 L.L. Wilson, J.W. House, M.E. Nixon, Time resolved deformation from the cylinder impact test 
AFATL-TR-89-76, November 1989.

[22]	 E. Włodarczyk, A. Starczewska, J. Materniak, J. Janiszewski, W. Koperski, Estimation 
of dynamic yield stress of shell steels by means of the Taylor impact test (in Polish), Bull, Acad., 
1, 56, 2007, 113.

[23]	 S.E. Jones, P.J. Maudlin, J.C. Forster, An engineering analysis of plastic wave propagation in 
the Taylor test, Int. J. Impact Engng, 19, 2, 1997, 95-105.

[24]	 S. Kaliski, Cz. Rymarz, K. Sobczyk, E. Włodarczyk, Waves, PWN, Warsaw, Elsevier,  
Amsterdam-Oxford-New York-Tokyo, 1992.

[25]	 P.G. Shewmon (ed.), V.F. Zackay, Response of metals to high velocity deformation, Interscience 
Publishers, New York-London, 1961.

[26]	 J.A. Zukas, T. Nicholas, H. Swift, L.B. Greszczuk, D.R. Curran, Impact dynamics, John 
Wiley and Sons, INC, New York-Chester-Brisbane-Toronto-Singapore, 1981.

[27]	 H.E. Konokman, M.M. Coruh, A. Kayran, Computational and experimental study of high‑speed 
impact of metallic Taylor cylinders, Acta Mech., 220, 2011, 61-85.

[28]	 D.J. Allen, W.K. Rule, S.E. Jones, Optimizing material strength constants numerically extracted 
from Taylor impact data, Experimental Mechanics, 37, 3, 1997.

[29]	 J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, C.R. Siviour, Review of experimental 
techniques for high rate deformation and shock studies, Int. J. Impact Engineering, 30, 2004, 
725-75.

[30]	 P.J. Maudlin, G.T. Gray Iii, C.M. Cady, G.C. Karcher, High-rate material modeling and valida-
tion using the Taylor cylinder impact test, Phil. Trans. R. Soc. a, London, 357, 1999, 1707‑29.

[31]	 S.M. Walley, P.D. Church, R. Townsley, J.E. Field, Validation of a path-dependent constitutive 
model for FCC and BCC metals using symmetric Taylor impact, J. Phys. IV, France, 10, 2000, 69-74.

[32]	 D.D. Radford, G.R. Willmott, S.M. Walley, J.E. Field, Failure mechanisms in ductile and 
brittle materials during Taylor impact, J. Phys. IV, France, 110, 2003, 687-92.



91Dynamic behaviour of a metallic cylinder striking a rigid target

[33]	 P.D. Church, T. Andrews, B. Goldthorpe, A review of constitutive model development within 
DERA, [in:] Jerome D.M. editor, Structures under extreme loading conditions, PVP, vol. 394, New 
York: American Society of Mechanical Engineers, 113-20.

[34]	 D. Raftopoloulos, N. Davids, Elastoplastic impact on rigid targets, AJAA Journal, 5, 12, 1967, 
2254-60.

E. Włodarczyk, A. Jackowski, M. Sarzyński

Dynamiczne zachowanie się metalowego walca uderzającego w sztywną tarczę
Streszczenie. Rozwiązano analitycznie jednowymiarowe zagadnienie dynamicznej deformacji, z dużymi 
odkształceniami plastycznymi metalowego cylindrycznego pręta, uderzającego prostopadle w sztywną 
tarczę. Materiał pręta modelowano w strefie odkształceń plastycznych nieściśliwym ośrodkiem sztyw-
no-plastycznym z liniowym wzmocnieniem. Sztywno-plastyczny model z liniowym wzmocnieniem 
zapewnia dobrą korelację wyników teoretycznych z eksperymentalnymi i w sposób istoty upraszcza 
rozwiązanie problemu. Zdaniem autorów, wyniki prezentowane w pracy mają aplikacyjne walory. 
Wyprowadzone zamknięte analityczne relacje, zapisane elementarnymi funkcjami dają badaczom  
i inżynierom bezpośredni wgląd we wzajemne oddziaływania między parametrami pręta podczas 
procesu zderzenia i po jego zakończeniu.
Słowa kluczowe: dynamika, dynamika pręta, test Taylora, duże odkształcenia, wzmocnienie od-
kształceniowe




