Identyfikatory
Warianty tytułu
Plastyczno-sprężysta fala obciążenia w ściance grubościennego kulistego zbiornika wymuszona wewnętrznym wybuchem
Języki publikacji
Abstrakty
The problem of elastic-plastic stress wave propagation in the thick-walled spherical reservoir was solved analytically. The wave was generated by the homogeneous surge pressure (explosion) inside the reservoir. The reservoir material was approximated with the elastic-ideally plastic incompressible medium. The analytical expressions determining the velocity of wave front propagation and the shape of its trajectory on the (r, t) plane were obtained. The coordinate of wave front location rp(t) unequivocally determines, in the form of closed formulae, all parameters of the problem. The size of plastically deformed zone of reservoir wall can be explicitly determined from the derived relations. The minimum pressure value pm, by which the plastic zone contains the whole reservoir wall, was also determined. It was proved, that by the pressure p > 2σ₀ lnβ the reservoir is destroyed. The paper has the cognitive and practical value.
Rozwiązano analitycznie zagadnienie propagacji sprężysto-plastycznej fali obciążenia w ściance grubościennego zbiornika kulistego. Fala generowana jest przez jednorodne ciśnienie wytworzone w sposób nagły (wybuch) wewnątrz zbiornika. Materiał zbiornika aproksymowano nieściśliwym ośrodkiem sprężysto-idealnie plastycznym. Uzyskano analityczne wyrażenia określające prędkość propagacji frontu fali plastycznej i kształt jego trajektorii przemieszczania się na płaszczyźnie (r, t). Współrzędna położenia frontu fali rp(t) jednoznacznie determinuje w postaci zamkniętych wyrażeń wszystkie parametry problemu. Z wyprowadzonych zależności można określić eksplicite rozmiary strefy ścianki zbiornika odkształconej plastycznie. Określono również minimalną wartość ciśnienia Pm przy której cała ścianka zbiornika objęta jest strefą odkształcenia plastycznego. Udowodniono, że przy ciśnieniu p > 2σ₀ lnβ zbiornik zostaje zniszczony. Praca ma walory poznawcze i aplikacyjne.
Czasopismo
Rocznik
Tom
Strony
55--74
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
autor
- Wojskowa Akademia Techniczna, Wydział Mechatroniki i Lotnictwa, 00-908 Warszawa, ul. S. Kaliskiego 2, edward.wlodarczyk@wat.edu.pl
Bibliografia
- [1] R. H. Cole, Underwater explosions, Princeton University Press, Princeton, New Jersey, 1948.
- [2] J. S. Rinehart, J. Pearson, Explosive working of metals, A Pergamon Press Book the Macmillan Company, New York, 1963.
- [3] H. G. Hopkins, Dynamic expansion of spherical cavities in metals, [in:]Progress in Solid Mechanics, 1, 1960, 84-164.
- [4] J. D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, Amsterdam–Oxford, 1975.
- [5] F. A. Baum et al., Physics of explosion [in Russian], Nauka, Moscow, 1975.
- [6] W. P. Korobeiinikow, Problems of the spherical explosion theory [in R ussian], Nauka, Moscow, 1985.
- [7] S. Kaliski et al., Waves, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1992.
- [8] E. Włodarczyk, Introduction into mechanics of explosion [in Polish], PWN, Warszawa, 1994.
- [9] E. Włodarczyk, M. Zielenkiewicz, Dynamics of a thick-walled spherical casing loaded with a time depending internal pressure, Journal of Theoretical and Applied Mechanics, 46, 1, 2008, 21-40.
- [10] E. Włodarczyk, M. Zielenkiewicz, Influence of elastic material compressibility on parameters of an expanding spherical stress wave, Shock Waves, 18, 6, 2009.
- [11] E. Włodarczyk, M. Zielenkiewicz, Analysis of the parameters of a spherical stress wave expanding in linear isotropic elastic medium, Journal of Theoretical and Applied Mechanics, 47, 4, 2009.
- [12] E. Włodarczyk, M. Zielenkiewicz, Wpływ ruchu powierzchni przyłożenia warunków brzegowych na dynamikę kulistej osłony balistycznej obciążonej wewnętrznie ciśnieniem produktów detonacji mieszaniny wybuchowej, Biul. WAT, 57, 2, 2009, 313-335.
- [13] K. Jach et al., Computer modeling of the dynamic reactions bodies by means of free points method [in Polish], PWN, Warsaw, 2001.
- [14] P. Chadwick, Propagation of spherical plastic-elastic disturbances from an expanded cavity, Journ. Mech. and Applied Math., 15, 3, 1962.
- [15] W. Prager, P. G. Hodgs, Theory of perfectly plastic solids, Wiley, New York, 1951.
- [16] W. Olszak et al., Teoria plastyczności, PWN, Warszawa, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0031-0004