PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Erbium-doped fibre laser mode-locked by a graphene saturable absorber is presented. Pulses with 630-fs duration and 41.9-MHz repetition frequency were achieved at the centre wavelength of 1562 nm and 9-nm FWHM bandwidth. Multilayer graphene was obtained by mechanical exfoliation from a pure graphite block by using the scotch-tape method and deposited on a fibre ferrule to form a saturable absorber. The laser operated in a mode-locked regime with 37-mW pumping and 4-mW output power.
Rocznik
Strony
362--366
Opis fizyczny
Bibliogr. 32 poz., il., rys., wykr.
Twórcy
autor
autor
  • Laser and Fiber Electronics Group, Institute of Telecommunications, Teleinformatics and Acoustics, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland, jaroslaw.sotor@pwr.wroc.pl
Bibliografia
  • [1] J. Mandon, G. Guelachvili, N. Picqué F. Druon, and P. Georges: Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 32, 1677-1679 (2007).
  • [2] R. J. Jones and J. Diels: Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. Phys. Rev. Lett. 86, 3288-3291 (2001).
  • [3] K. Schütze, H. Pösl, and G. Lahr: Laser micromanipulation systems as universal tools in cellular and molecular biology and in Medicine. Cell. Mol. Biol. 44, 735-46 (1998).
  • [4] U. Keller: Recent developments in compact ultrafast lasers. Nature 424, 831-838 (2003).
  • [5] X. Tian, M. Tang, P.P. Shum, Y. Gong, C. Lin, S. Fu, and T. Zhang: High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fibre laser. Opt. Lett. 34, 1432-1434 (2009).
  • [6] F. Ilday, J. Chen, and F. Kärtner: Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fibre laser. Opt. Express 13, 2716-2721 (2005).
  • [7] J. Chen, J.W. Sickler, E.P. Ippen, and F.X. Kärtner: High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. Opt. Lett. 32, 1566-1568 (2007).
  • [8] A. Komarov, H. Leblond, and F. Sanchez: Passive harmonic mode-locking in a fibre laser with nonlinear polarization rotation. Opt. Commun. 267, 162-169 (2006).
  • [9] M. P. Nikodem, A. Budnicki, G. Tomczyk, and K. M. Abramski: Investigation of passively mode-locked erbium doped fibre ring laser due to nonlinear polarization rotation. Opto-Electron. Rev. 16, 194-198 (2008).
  • [10] M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu: Polymer saturable absorber materials in the 1.5 μm band using polymethyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser. Opt. Lett. 31, 915-917 (2006).
  • [11] C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn: All-fibre polarization locked vector soliton laser using carbon nano-tubes. Opt. Lett. 36, 3831-3833 (2011).
  • [12] J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni: Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fibre end-faces. Opt. Express 15, 9176-9183 (2007).
  • [13] O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, and M. Pessa: 1.5-μm monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fibre laser. Opt. Lett. 28, 364-366 (2003).
  • [14] Y. Cai, C. Zhou, M. Zhang, L. Ren, L. L. Chen, W. P. Kong, D. Q. Pang, and Z. G. Zhang: Femtosecond Er-doped fibre laser using high modulation depth SESAM based on metal/dielectric hybrid mirror. Laser Phys. 19, 2023-2026 (2009).
  • [15] S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller: Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser. Opt. Express 19, 16491-16497 (2011).
  • [16] S. Schneider, A. Stockmann, and W. Schuesslbauer: Self-starting mode-locked cavity-dumped femtosecond Ti:sap-phire laser employing a semiconductor saturable absorber mirror. Opt. Express 6, 220-226 (2010).
  • [17] J. K. Jabczyński, W. Zendzian, and J. Kwiatkowski: CW mode-locked Nd:YVO4 laser pumped by 20-W laser diode bar. Opto-Electron. Rev. 14, 131-135 (2006).
  • [18] D. Deng, L. Zhan, Z. Gu, Y.Gu, and Y. Xia: 55-fs pulse generation without wave-breaking from an all-fibre Erbium-doped ring laser. Opt. Express 17, 4284-4288 (2009).
  • [19] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba: Optical properties of single-wall carbon nanotubes. Synthetic Met. 103, 2555 (1999).
  • [20] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361 (2002).
  • [21] Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang: Atomic layer graphene as saturable absorber for ultrafast pulsed laser. Adv. Funct. Mater. 19, 3077-3083 (2009).
  • [22] H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh: Large energy soliton erbium-doped fibre laser with a graphene-polymer composite mode-locker. Appl. Phys. Lett. 95, 141103 (2009).
  • [23] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A.C. Ferrari: Sub 200-fs pulse generation from a graphene mode-locked fibre laser. Appl. Phys. Lett. 97, 203106 (2010).
  • [24] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari: Graphene mode-locked ultrafast laser. ACS Nano 4, 803-810 (2010).
  • [25] Y. W. Song, S. Y Jang, W. S. Han, and M. K. Bae: Graphene mode-lockers for fibre lasers functioned with evanescent field interaction. Appl. Phys. Lett. 96, 051122 (2010).
  • [26] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh: Dissipative soliton operation of an ytterbium-doped fibre laser mode-locked with atomic multilayer graphene. Opt. Lett. 35, 3622-3624 (2010).
  • [27] J. Liu, S. Wu, Q. Yang, Y. Song, Z. Wang, and P. Wang: 163 nJ graphene mode-locked Yb-doped fiber laser. Proc. CLEO: Laser Applications to Photonic Applications, OSA Technical Digest, JWA23, Baltimore, 2011.
  • [28] Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai: Graphene-based passively Q-switched dual-wave-length erbium-doped fibre laser. Opt. Lett. 35, 3709 (2010).
  • [29] D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A.C. Ferrari: Graphene Q-switched tuneable fibre laser. Appl. Phys. Lett. 98, 073106 (2011).
  • [30] A. Martinez, K. Fuse, and S. Yamashita: Mechanical exfoliation of graphene for the passive mode-locking of fibre lasers. Appl. Phys. Lett. 99, 121107 (2011).
  • [31] Y. M. Chang, H. Kim, J. H. Lee, and Y. Song: Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fibre mode-locked lasers. Appl. Phys. Lett. 97, 211102 (2010).
  • [32] M. Nikodem and K. Abramski: 169 MHz repetition frequency all-fibre passively mode-locked erbium-doped fibre laser. Opt. Commun. 283, 109-112 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0027-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.