PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modulation bandwidth of planar waveguide laser with 1D photonic crystal mirrors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analysis of the 3-dB modulation bandwidth in planar waveguide laser based on 1D photonic crystal structures is presented. The theoretical model takes into account the gain saturation effect, transverse and longitudinal field distribution. A small-signal perturbation solution of the coupled laser rate equation is used to obtain relations describing the dynamic operation. In paper, the distributed Bragg resonator DBR created as 1D photonic crystal is considered. The active waveguide is surrounded by 1D photonic crystal mirrors consisting of alternately placed stripes with different refractive indices. In particular, the influence of the photonic crystal parameters on the 3-dB modulation bandwidth is investigated.
Twórcy
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland, A.Mossakowska@elka.pw.edu.pl
Bibliografia
  • [1] E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059-2062 (1987).
  • [2] S. John: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486-2489 (1987).
  • [3] J. M. Lourtioz, H. Benisty, V. Berger, and J. M. Gerard, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer-Verlag, Berlin, Heidelberg, 2008.
  • [4] K. Leśniewska-Matys, A. Mossakowska-Wyszyńska, and P. Szczepański: Nonlinear operation of planar waveguide laser with photonic crystal. Phys. Scripta T118, 107-110 (2005).
  • [5] H. Liu, M. Yan, P. Shum, H. Ghafouri-Shiraz, and D. Liu: Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers. Opt. Express 12, 4269-4274 (2004).
  • [6] G. P. Agrawal: Modulation bandwidth of high-power single-mode semiconductor lasers: Effect of intraband Gain saturation. Appl. Phys. Lett. 57, 1-3 (1990).
  • [7] A. Mossakowska-Wyszyńska: Modulation bandwidth of planar circular grating distributed bragg reflector lasers. IEEE J. Quantum Elec. 39, 1129-1134 (2003).
  • [8] A. Yariv, Quantum Electronics, edited by John Wiley & Sons, New York, 1988.
  • [9] J. Stone, A. Burrus, A. G. Dentai, and B. I. Miller: Nd:YAG single-crystal fiber laser: Room-temperature cw operation using a single LED as an end pump. Appl. Phys. Lett. 29, 37-39 (1976).
  • [10] C. Bertrand, Y. Le Petitcorps, L. Albingre, and V. Dupuis: The laser welding technique applied to the non-precious dental alloys procedure and results. Brit. Dent. J. 190, 255-257 (2001).
  • [11] M. M. Jawad, S. T. Abdul Qader, A. A. Zaidan, B. B. Zaidan, A. W. Naji, and I. T. Abdul Qader: An overview of laser principle, laser-tissue interaction mechanisms and laser safety precautions for medical laser users. Int. J. Pharm. 7, 189-197 (2011).
  • [12] R. Sabatini and M. A. Richardson, Airborne Laser Systems Testing and Analysis, NATO: RTO AGARDograph 300 Flight Test Techniques Series - Volume 26, RTO-AG-300-V26, 2010.
  • [13] P. Szczepański, A. Mossakowska, and D. Dejnarowicz: Relaxation oscillations in waveguide distributed feedback lasers. J. Lightwave Technol. 10, 220-226 (1992).
  • [14] D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York and London, 1974.
  • [15] A. Mossakowska-Wyszyńska, A. Przybysz, and P. Szczepański: Light generation in planar waveguide DFB and F-P lasers with photonic crystal. Proc. SPIE 5230, 143-148 (2003).
  • [16] P. Yeh, A. Yariv, and C.-S. Hong: Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am. 67, 423-438 (1977).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0027-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.