PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid crystal cell for space-borne laser rangefinder to space mission applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Liquid crystal cell (LCC) for space-borne laser rangefinder to space mission applications was developed, manufactured and tested under cooperation between Military University of Technology (MUT) in Poland and Vavilov State Optical Institute (Vavilov SOI) in Russia. LCC operates in twisted nematic mode, commutating the polarization plane of a laser beam working at 1.064 µm and the energy density not smaller than 0,15 J/cm² at the pulse duration about 8 ns. The transmission of LCC is not smaller than 95% at the aperture diameter not less than 15 mm. Switching on and switching off times in a 2.5-µm thick LCC driven by voltage of 10 V are not larger than 0.7 ms and 7 ms, respectively, in the operating temperature range from 20°C to 40°C. The LCCs developed in MUT were positively tested under space requirements in Vavilov SOI.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] L. M. Blinov and V. G. Chigrinov, Electrooptics effects in liquid crystal materials, pp. 431-455, Springer-Verlag, New York, 1994.
  • [2] O. D. Lavrentovich: Liquid crystals, photonic crystals, metamaterials and transformation optics. Proc. Natl. Acad. Sci. 108, 5143-5144 (2011).
  • [3] C. H. Gooch and H. A. Tarry: The optical properties of twisted nematic liquid crystal structures with twist angle 90º. J. Phys. D. Appl. Phys. 8, 1575-1584 (1975).
  • [4] P. Leenhouts and M. Schadt: Optics of twisted nematic and supertwisted nematic liquid-crystal displays. J. Appl. Phys. 60, 3275-3281(1986).
  • [5] H. S. Kwok: Parameter space representation of liquid crystal display operating modes. J. Appl. Phys. 80, 3687-3693 (1996).
  • [6] M. Olifierczuk: Optimization of dysplasia compared to TN for large-sized imaging. PhD dissertation, MUT, Warsaw, 2000.
  • [7] K. Tarumi, U. Frinkenzeller, and B. Schuler: Dynamic behaviour of twisted nematic liquid crystals. Jpn. J. Appl. Phys. 31, 2829-2839 (1992).
  • [8] F. Nakano, H. Kawakami, H. Morishita, and M. Sato: Dynamic properties of twisted nematic liquid crystal cells. Jap. J. Appl. Phys. 19, 659-663 (1980).
  • [9] R. Dąbrowski, J. Dziaduszek, A. Ziłek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S-T Wu: Low viscosity, high birefringence liquid crystalline compounds and mixtures. Opto-Electron. Rev. 15, 47-51 (2007).
  • [10] R. Dąbrowski: New liquid crystalline materials for photonic applications. Mol. Cryst. Liq.Cryst. 421, 1-21 (2004).
  • [11] Z. Raszewski, E. Kruszelnicki-Nowinowski, J. Kędzierski, P. Perkowski, W. Piecek, R. Dąbrowski, P. Morawiak, and K. Ogrodnik: Electrically tuneable liquid crystal filters. Mol. Cyst. Liq. Cryst. 525, 112-127 (2010).
  • [12] Daten Und Eigenschaften, Quarzglas fur die Optic, http://www.heraeus-quarzglas.de/media/webmedia_local/downloads/broschren_mo/DatenundEigenschaften_QuarzglasfuerdieOptik.pdf
  • [13] X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert: Refractive-index-matched indium-thin - oxide for liquid crystal display. Jpn. J. Appl. Phys. 48, 120203-120206 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0027-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.