PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel performance of the fine-grain pipeline FPGA image processing system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of FPGA circuits in imaging systems increases. They compete with other computing environments. The article describes the indications to be followed while choosing the type of image processing computing system taking under consideration the advantages and disadvantages of each technology: general purpose processor, digital signal processor, graphical processing unit, application specific Integrated circuit and field programmable gate array. Attention is drawn to various video transmission standards. The state of research and development trends in the field of FPGA-based image processing are briefly presented. A defining processing performance method for image processing is proposed. It is proven that for a pipeline architecture implemented in FPGA, a linear speedup is achieved and parallel efficiency is equal to one.
Twórcy
autor
  • Institute of Automatics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Cracow, Poland, mago@agh.edu.pl
Bibliografia
  • [1] S. Asano, T. Maruyama, and Y. Yamaguchi: Performance comparison of FPGA, GPU, and CPU in image processing. Proc. I. C. Field Prog. Logic, Prague, 126-131 (2009).
  • [2] E. J. Kelmelis, F. E. Ortiz, P. F. Curt, M. R. Bodnar, K. E. Spagnoli, A. L. Paolini, and D. K. Price: Comparing FPGAs and GPUs for high-performance image processing applications. Proc. SPIE 7701, 77010C-9 (2010).
  • [3] K. Mueller, F. Xu, and N. Neophytou: Why do commodity graphics hardware boards (GPUs) work so well for acceleration of computed tomography?. Proc. SPIE 6498, 64980N-12 (2007).
  • [4] P. Lysaght: The programmable logic perspective. http://conferenze.dei.polimi.it/FPL2010/finalprogram.htm
  • [5] http://www.tridentmicro.com/producttree/tv/dtv/
  • [6] K. Wiatr, Hardware Implementation of Image Processing Algorithms in Real-time Video Codecs, AGH University of Science and Technology Press, Cracow, 1998.
  • [7] T. Komuro, T. Tabata, and M. Ishikawa: A reconfigurable embedded system for 1000 f s real time vision. IEEE T. Circ. Syst. Vid. 20, 496-504 (2010).
  • [8] http://www.xilinx.com/products/targeted_design_platforms.htm
  • [9] http://www.mathworks.com/products/viprocessing/demos.html
  • [10] http://www.xilinx.com/products/devices.htm
  • [11] P. Russek, E. Jamro, M. Wielgosz, M. Janiszewski, M. Pietroń, and K. Wiatr: Computation acceleration on SGI RASC: FPGA based reconfigurable computing hardware. Comput. Sci. 9, 21-34 (2008).
  • [12] T. Kryjak and M. Gorgoń: Pipeline implementation of peer group filtering in FPGA. Proc. KUKDM 2010: Third ACC Cyfronet AGH Users' Conf., Zakopane, 27-29 (2010).
  • [13] A. Gorkic, D. Bracun, and J. Diaci: Developing a camera with a built in programmable image processor. Ventil 15, 246-252 (2009).
  • [14] Ł. Mik and M. Gorgoń: FPGA-based digital camera with image processing system. Automatyka 13, edited by AGH University of Science and Technology Press, Cracow, 921-929 (2009).
  • [15] http://www.nallatech.com/fpga-motherboards.html
  • [16] R. G. Shoup: Real time image manipulation using soft hard-ware. IEEE Sys. Man Cybern. 3, 343-348 (1993).
  • [17] M. Z. Zhang, H. T. Ngo, A. R. Livingston, and V. K. Asari: A high performance architecture for implementation of 2D convolution with quadrant symmetric kernels. Int. J. Comput. Appl. 30, 298-308 (2008).
  • [18] S. Rehman, R. Young, C. Chatwin, and P. Birch: An FPGA based generic framework for high speed sum of absolute difference implementation. Eur. J. Sci. Res. 1, 6-29 (2009).
  • [19] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.J. Lee: Real-time optical flow calculations on FPGA and GPU architectures: A comparison study. Proc. 16th Int. Symp. on Field-Programmable Custom Computing Machines, Stanford, 173-182 (2008).
  • [20] H. Bessalah, F. Alim, M. A. Bencherif, and S. Seddiki: Toward an embedded image wavelet transform implementation approach. Transactions on Systems, Signals and Devices 2, 291-310 (2005-2006).
  • [21] A. Ahmad, B. Krill, A. Amira, and H. Rabah: Efficient architectures for 3D HWT using dynamic partial reconfiguration. J. Syst. Architect. 56, 305-316 (2010).
  • [22] D. Han, B. Lee, J. I. Cho, and D. H. Hwang: Real time object segmentation using disparity map of stereo matching. Appl. Math. Comput. 205, 770-777 (2008).
  • [23] B. Thornberg and N. Lawal: Real-time component labelling and feature extraction on FPGA. Proc. IEEE Symp. Signal Circ., Iasi, 4 (2009).
  • [24] Y. Ito and K. Nakano: Optimized component labelling algorithm for using in medium sized FPGAs. Proc. 9th Int. Conf. on Parallel and Distributed Computing, Applications and Technologies, Otago, 171-176 (2008).
  • [25] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng: An architecture of optimised SIFT feature detection for an FPGA implementation of an image matcher. I. C. Field Prog. Techn. FPT, Sydney, 30-37 (2009).
  • [26] S. Saadi, H. Mekki, and A. Guessoum: Object detection and segmentation algorithm implemented on a reconfigurable embedded platform based FPGA. T. Signal Process. 4, 552-561 (2008).
  • [27] H. T. Ngo, R. N. Rakvic, R. P. Broussard, and R. W. Ives: An FPGA based design of a modular approach for integral images in a real-time face detection system. Proc. SPIE 7351, 73510B (2009).
  • [28] H. C. Nguyen, B. R. Hayes Gill, S. P. Morgan, Y. Zhu, D. Boggett, X. Huang, and M. Potter: A field programmable gate array based system for high frame rate laser Doppler blood flow imaging. J. Med. Eng. Technol. 34, 306-315 (2010).
  • [29] P. Zhou, Y. Liu, and Y. Wang: Pipeline architecture and parallel computation based real time stereovision tracking system for surgical navigation. IEEE. T. Instrum. Mea. 59, 1240-1250 (2010).
  • [30] J. J. Koo, A. C. Evans, and W. J. Gross: 3D brain MRI tissue classification on FPGAs. IEEE. T. Image Process. 18, 2735-2746 (2009).
  • [31] Z. Voroshazi, Z. Nagy, and P. Szolgay: FPGA based real time, multichannel emulated digital retina model implementation. Eurasip. J. Adv. Sig. Pr., art. ID 749838, 10 (2009).
  • [32] V. Simhadri and Y. Ozturk: RASCor: An associative hardware algorithm for real time stereo. Comput. Electr. Eng. 35, 459-477 (2009).
  • [33] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, and J. W. Jeon: FPGA design and implementation of a real time stereo vision system. IEEE T. Circ. Syst. Vid. 20, 15-26 (2010).
  • [34] X. Y. Hong, Z. Y. Fang, D. Xin, and L. J. Lin: FPGA implementation of non-parametric stereo matching algorithm. J. Zhejiang Univ. 43, 250-254 (2009).
  • [35] M. Moradi, M. A. Poormina, and F. Razzazi: FPGA implementation of feature extraction and LP neural network classifier for Farsi handwritten digit recognition. Proc. 3d UK Sim Eur. Symp. on Computer Modelling and Simulation, 231-242, 2009.
  • [36] J. Konieczny and A. Luczak: A scalable motion estimation algorithm for distributed systems. PAK 55, 684-686 (2009).
  • [37] K. S. Park, S. H. Cho, S. Hong, and W. D. Cho: Real-time target detection architecture based on reduced complexity hyperspectral processing. Eurasip. J. Ad. Sig. Pr., art. 438051 (2008).
  • [38] M. Gorgoń: Reconfigurable architectures for parallel execution of image processing tasks. Opto-Electron. Rev. 15, 196-201 (2007).
  • [39] M. Jabłoński: On paralellization of machine vision algorithms in data-stream-driven system. PhD Dissertation, AGH-UST, Cracow, 2009. (in Polish)
  • [40] J. L. Gustafson: Reevaluating Amdahl's law. Commun. ACM 31, 532-533 (1988).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0027-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.