PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contactless electroreflectance spectroscopy of optical transitions in low dimensional semiconductor structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors present the application of contactless electroreflectance (CER) spectroscopy to study optical transitions in low dimensional semiconductor structures including quantum wells (QWs), step-like QWs, quantum dots (QDs), quantum dashes (QDashes), QDs and QDashes embedded in a QW, and QDashes coupled with a QW. For QWs optical transitions between the ground and excited states as well as optical transitions in QW barriers and step-like barriers have been clearly observed in CER spectra. Energies of these transitions have been compared with theoretical calculations and in this way the band structure has been determined for the investigated QWs. For QD and QDash structures optical transitions in QDs and QDashes as well as optical transitions in the wetting layer have been identified. For QDs and QDashes surrounded by a QW, in addition to energies of QD and QDash transitions, energies of optical transitions in the surrounded QW have been measured and the band structure has been determined for the surrounded QW. Finally some differences, which can be observed in CER and photoreflectance spectra, have been presented and discussed for selected QW and QD structures.
Twórcy
autor
  • Institute of Physics, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
autor
  • Institute of Physics, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
Bibliografia
  • [1] O. J. Glembocki and B. V. Shanabrook: Photoreflectance spectroscopy of microstructures. Semiconductors and Semimetals Vol. 36, p. 221, edited by D. G. Seiler and C. L. Littler, Academic Press, New York, 1992.
  • [2] F. H. Pollak: Modulation spectroscopy of semiconductors and semiconductor microstructures. in M. Balkanski, Hand-book on Semiconductors, Vol. 2, p. 527, edited by Elsevier Science B. V., Amsterdam, 1994.
  • [3] J. Misiewicz, P. Sitarek, and G. Sek: Photoreflectance spectroscopy of low-dimensional semiconductor structures. Opto-Electron. Rev. 8, 1 (2000).
  • [4] J. Misiewicz, P. Sitarek, G. Sek, and R. Kudrawiec: Semiconductor heterostructures and device structures investigated by photo-reflectance spectroscopy. Mater. Sci. 21, 263 (2003).
  • [5] R. Kudrawiec: Application of contactless electroreflectance to III-nitrides. Phys. Stat. Sol. (b) 247, 1616 (2010).
  • [6] X. Yin and F. H. Pollak: Novel contactless mode of electroreflectance. Appl. Phys. Lett. 59, 2305 (1991).
  • [7] R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, J. S. Harris, M. Motyka, and J. Misiewicz: Contactless electroreflectance approach to study the Fermi level position in GaInNAs/GaAs quantum wells. J. Appl. Phys. 102, 113501 (2007).
  • [8] R. Kudrawiec, E. Tschumak, J. Misiewicz, and D. J. As: Contactless electroreflectance study of Fermi-level pinning at the surface of cubic GaN. Appl. Phys. Lett. 96, 241904 (2010).
  • [9] R. Kudrawiec, M. Gladysiewicz, J. Misiewicz, V. M. Korpijarvi, J. Pakarinen, P. Laujjanen, A. Laakso, M. Guina, M. Dumitrescu, and M. Pessa: Contactless electroreflectance study of band bending in Be-doped GaInNAs/GaAs quantum wells: The origin of photoluminescence enhancement. Appl. Phys. Lett. 97, 021902 (2010).
  • [10] M. Gladysiewicz, R. Kudrawiec, J. Misiewicz, G. Cywinski, M. Siekacz, P. Wolny, and C. Skierbiszewski: The surface boundary conditions in GaN/AlGaN/GaN transistor heterostructures. Appl. Phys. Lett. 98, 231902 (2011).
  • [11] R. Kudrawiec, M. Motyka, M. Gladysiewicz, J. Misiewicz, J. A. Gupta, and G. C. Aers: Contactless electroreflectance of GaNyAs1-y/GaAs multi quantum wells: The conduction band offset and electron effective mass issues. Solid State Commun. 138, 365 (2006).
  • [12] R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, J. S. Harris, M. Motyka, and J. Misiewicz: Fermi level shift in GaInNAsSb/GaAs quantum wells upon annealing studied by contactless electroreflectance. Appl. Phys. Lett. 90, 061902 (2007).
  • [13] R. Kudrawiec, M. Gladysiewicz, J. Misiewicz, F. Ishikawa, and K. H. Ploog: Ground and excited state transitions in as-grown Ga0.64In0.36N0.046As0.954 quantum wells studied by contactless electroreflectance. Appl. Phys. Lett. 90, 041916 (2007).
  • [14] R. Kudrawiec, H. B. Yuen, M. Motyka, M. Gladysiewicz, J. Misiewicz, S. R. Bank, H. P. Bae, M. A. Wistey, and J. S. Harris: Contactless electroreflectance of GaInNAsSb/GaAs single quantum wells with indium content of 8%-32%. J. Appl. Phys. 101, 013504 (2007).
  • [15] R. Kudrawiec, H. B. Yuen, S. R. Bank, H. P. Bae, M. A. Wistey, J. S. Harris, M. Motyka, and J. Misiewicz: On the Fermi level pinning in as-grown GaInNAs(Sb)/GaAs quantum wells with indium content of 8%-32%. J. Appl. Phys. 104, 033526 (2008).
  • [16] R. Kudrawiec, P. Poloczek, J. Misiewicz, H. P. Bae, T. Sarmiento, S. R. Bank, H. B. Yuen, M. A. Wistey, and J. S. Harris Jr: Contactless electroreflectance of GaInNAsSb/GaNAs/ GaAs quantum wells emitting at 1.5-1.65 μm: Broadening of the fundamental transition. Appl. Phys. Lett. 94, 031903 (2009).
  • [17] R. Kudrawiec, M. Siekacz, M. Krysko, G. Cywinski, J. Misiewicz, and C. Skierbiszewski: Contactless electroreflectance of InGaN layers with indium content 36%: The surface band bending, band gap bowing, and Stokes shift issues. J. Appl. Phys. 106, 113517 (2009).
  • [18] R. Kudrawiec, R. Kucharski, M. Rudziński, M. Zając, J. Misiewicz, W. Strupiński, R. Doradziński, and R. Dwiliński: Application of contactless electroreflectance to study the epi readiness of m-plane GaN substrates obtained by ammonothermal method. J. Vac. Sci. Technol. A 28, L18 (2010).
  • [19] S. Moneger, H. Qiang, F. H. Pollak, D. L. Mathine, R. Droopad, and G. N. Maracas: Contactless electroreflectance characterization of three InGaAs quantum wells placed in a GaAs/AlGaAs resonant cavity. Solid State Electron. 39, 871 (1996).
  • [20] L. Aigouy, T. Holden, F. H. Pollak, N. N. Ledentsov, W. M. Ustinov, P. S. Kopev, and D. Bimberg: Contactless electroreflectance of a vertically coupled quantum dot-based InAs/GaAs laser. Appl. Phys. Lett. 70, 3329 (1997).
  • [21] Y. S. Huang, W. D. Sun, F. H. Pollak, J. L. Freeouf, I. D. Calder, and R. E. Mallard: Contactless electroreflectance characterization of GaInP/GaAs heterojunction bipolar transistorstructures. Appl. Phys. Lett. 73, 214 (1998).
  • [22] W. Krystek, M. Leibovitch, W. D. Sun, F. H. Pollak, G.Gumbs, G. T. Burnham, and X. Wang: Characterization of a graded index of refraction separate confinement heterostructure (GRINSCH) laser structure using contactless electroreflectance. J. Appl. Phys. 84, 2229 (1998).
  • [23] M. Munoz, S. P. Guo, X. C. Zhou, M. C. Tamargo, Y. S. Huang, C. Trallero-Giner, and A. H. Rodriguez: Contactless electroreflectance of CdSe/ZnSe quantum dots grown by molecular beam epitaxy. Appl. Phys. Lett. 83, 4399 (2003).
  • [24] L. Malikova, F. H. Pollak, R. A. Masut, P. Desjardins, and Lev G. Mourokh: Temperature dependent contactless electroreflectance study of intersubband transitions in a self−as-sembled InAs/InP (001) quantum dot structure. J. Appl. Phys. 94, 4995 (2003).
  • [25] P. Jin, X. Q. Meng, Z. Y. Zhang, C. M. Li, B. Xu, F. Q. Liu, Z. G. Wang, Y. G. Li, C. Z. Zhang, and S. H. Pan: Effect of InAs quantum dots on the Fermi level pinning of undoped-n+type GaAs surface studied by contactless electroreflectance. J. Appl. Phys. 93, 4169 (2003).
  • [26] M. Munoz, H. Lu, S. Gua, X. Zhou, M. C. Tamargo, F. H. Pollak, Y. S. Huang, C. Trallero-Giner, and A. H. Rodriguez: Contactless electroreflectance studies of II-VI nanostructures grown by molecular beam epitaxy. Phys. Stat. Sol. 241, 546 (2004).
  • [27] V. V. Chaldyshev, A. S. Shkolnik, V. P. Evtikhiev, and T. Holden: Optical reflection and contactless electroreflection from GaAlAs layers with periodically arranged GaAs quantum wells. Semiconductors 40, 1432 (2006).
  • [28] H. P. Hsu, A. Korotcov, Y. S. Huang, W. C. Chen, Y. K. Su, and K. K. Tiong: Contactless electroreflectance and photoluminescence study of highly strained InGaAs(Sb) double quantum wells. Phys. Stat. Sol. (a) 204, 373 (2007).
  • [29] R. Kudrawiec and J. Misiewicz: Photoreflectance and contactless electroreflectance measurements of semiconductor structures by using bright and dark configurations. Rev. Sci. Instr. 80, 096103 (2009).
  • [30] R. Kudrawiec and J. Misiewicz: Photoreflectance spectroscopy of semiconductor structures at hydrostatic pressure: a comparison of GaInAs/GaAs and GaInNAs/GaAs single quantum wells. Appl. Surf. Sci. 253, 80 (2006).
  • [31] D. E. Aspnes: Third-derivative modulation spectroscopy with low-field electroreflectance. Surf. Sci. 37, 418 (1973).
  • [32] D. E. Aspnes and A. A. Studna: Schottky-Barrier Electro-reflectance: Application to GaAs. Phys. Rev. B7, 4605 (1973).
  • [33] D. E. Aspnes: Band nonparabolicities, broadening, and internal field distributions: The spectroscopy of Franz-Keldysh oscillations. Phys. Rev. B10, 4228 (1974).
  • [34] D. E. Aspnes, Handbook on Semiconductors Vol. 2, p 109, edited M. Balkanski, North Holland, Amsterdam, 1980.
  • [35] B. V. Shanabrook, O. J. Glembocki, and W. T. Beard: Photoreflectance modulation mechanisms in GaAs-AlxGa1-xAs multiple quantum wells. Phys. Rev. B 35, 2540 (1987).
  • [36] O. J. Glembocki: Modulation spectroscopy of semiconductor materials, interfaces, and microstructures: an overview. Proc. SPIE 1286, 2, San Diego (1990).
  • [37] H. Shen and F. H. Pollak: Generalized Franz-Keldysh theory of electromodulation. Phys. Rev. B42, 7097 (1990).
  • [38] R. Kudrawiec, P. Podemski, M. Motyka, J. Misiewicz, J. Serafińczuk, A. Somers, J. P. Reithmaier, and A. Forchel: Electromodulation spectroscopy of In0.53Ga0.47As/In0.53 Ga0.23Al0.24As quantum wells. Superlattice. Microst. 46, 425 (2009).
  • [39] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001) and references therein.
  • [40] R. F. Kopf, H. P. Wei, A. P. Perley, and G. Livescu: Electron effective mass and band-gap dependence on alloy composition of AlyGaxIn1-y-xAs, lattice matched to InP. Appl. Phys. Lett. 60, 2386 (1992).
  • [41] A. Ramam and S. J. Chua: Features of InGaAlAs/InP heterostructures. J. Vac. Sci. Technol. B16, 565 (1998).
  • [42] R. Kudrawiec and J. Misiewicz: Evidence for Fermi levelshift in GaInAs/GaAs quantum well upon nitrogen incorporation. Solid State Commun. 150, 227 (2010).
  • [43] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz: Band Anticrossing in GaInNAs Alloys. Phys. Rev. Lett. 82, 1221 (1999).
  • [44] J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sęk, A. Forchel, J. C. Harmand, and M. Hammar: Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells. J. Phys.: Condens. Mat. 16, 3071 (2004).
  • [45] W. Walukiewicz: Intrinsic limitations to the doping of wide-gap semiconductors. Physica B302, 12 (2001).
  • [46] R. Kudrawiec, S. R. Bank, H. B. Yuen, M. A. Wistey, L. L. Goddard, J. S. Harris, M. Gladysiewicz, M. Motyka, and J. Misiewicz: Conduction band offset for Ga0.62In0.38Nx As0.991-xSb0.009/GaNxAs1-x/GaAs system with the ground state transition at 1.5-1.65 μm. Appl. Phys. Lett. 90, 131905 (2007).
  • [47] R. Kudrawiec, J. Andrzejewski, J. Misiewicz, D. Gollub, and A. Forchel: Photoreflectance spectroscopy of step-like GaInNAs/GaInNAs/GaAs quantum wells. Phys. Stat. Sol. (a) 202, 1255 (2005).
  • [48] M. Motyka, G. Sek, R. Kudrawiec, J. Misiewicz, L. H. Li, and A. Fiore: On the modulation mechanism in photoreflectance of an ensemble of self assembled InAs/GaAs quantum dots. J. Appl. Phys. 100, 073502 (2006).
  • [49] G. Sek, M. Motyka, R. Kudrawiec, J. Misiewicz, F. Lelarge, B. Rousseau, and G. Patriarche: Modulated reflectivity probing of quantum dot and wetting layer states in InAs/GaInAsP/InP quantum dot laser structures. Phys. Stat. Sol. (a) 204, 496 (2007).
  • [50] R. Kudrawiec, M. Motyka, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, A. Forchel, A. Sauerwald, T. Kümell, and G. Bacher: Contactless electroreflectance of InAs/In0.53Ga0.23Al0.24As quantum dashes grown on InP substrate: Analysis of the wetting layer transition. J. Appl. Phys. 101, 013507 (2007).
  • [51] W. Rudno-Rudzinski, G. Sęk, J. Misiewicz, T. E. Lamas, and A. A. Quivy: The formation of self-assembled InAs/GaAs quantum dots emitting at 1.3 μm followed by photoreflectance spectroscopy. J. Appl. Phys. 101, 073518 (2007).
  • [52] C. Gilfert, E.-M. Pavelescu, and J. P. Reithmaier: Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InAlGaAs/InP (100). Appl. Phys. Lett. 96, 191903 (2010).
  • [53] M. Motyka, R. Kudrawiec, G. Sęk, J. Misiewicz, I. L. Krestnikov, S. Mikhrin, and A. Kovsh: Room temperature contactless electroreflectance characterization of InGaAs/InAs/GaAs quantum dot wafers. Semicond. Sci. Technol. 21, 1402 (2006).
  • [54] M. Motyka, R. Kudrawiec, G. Sek, J. Misiewicz, D. Bisping, B. Marquardt, A. Forchel, and M. Fischer: Contactless electroreflectance investigation of energy levels in a 1.3 μm emitting laser structure with the gain medium composed of InAsN quantum dots embedded in GaInNAs/GaAs quantum wells. Appl. Phys. Lett. 90, 221112 (2007).
  • [55] W. Rudno-Rudziński, R. Kudrawiec, G. Sęk, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel: Photoreflectance investigation of InAs quantum dashes embedded in In0.53Ga0.47As/In0.53Ga0.23Al0.24As quantum well grown on InP substrate. Appl. Phys. Lett. 88, 141915 (2006).
  • [56] S. Hein, S. Hofling, and A. Forchel: Modulation Bandwidth and Linewidth Enhancement Factor of High-Speed 1.55-μm Quantum-Dash Lasers. IEEE Photon. Technol. Lett. 21, 528 (2009) and references therein.
  • [57] R. Kudrawiec R., G. Sęk, M. Motyka, J. Misiewicz, A. Somers, S. Höling, L. Worschech, and A. Forchel: Contactless electroreflectance of optical transitions in tunnel-injection structures composed of an In0.53Ga0.47As/In0.53Ga0.23Al0.24As quantum well and InAs quantum dashes. J. Appl. Phys. 108, 086106 (2011).
  • [58] G. Sek, P. Poloczek, P. Podemski, R. Kudrawiec, J. Misiewicz, A. Somers, S. Hein, S Hofling, and A. Forchel: Experimental evidence on quantum well-quantum dash energy transfer in tunnel injection structures for 1.55 μm emission. Appl. Phys. Lett. 90, 081915 (2007).
  • [59] W. Rudno-Rudziński, K. Ryczko, G. Sęk, R. Kudrawiec, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel: Optically probed wetting layer in InAs/InGaAlAs/InP quantum dash structures. Appl. Phys. Lett. 86, 101904 (2005).
  • [60] R. Kudrawiec, P. Sitarek, J. Misiewicz, S. R. Bank, H. B. Yuen, M. A. Wistey, and J. S. Harris Jr: Interference effects in electromodulation spectroscopy applied to GaAs-based structures: A comparison of photoreflectance and contactless electroreflectance. Appl. Phys. Lett. 86, 091115 (2005).
  • [61] R. Kudrawiec, M. Motyka, M. Gladysiewicz, P. Sitarek, and J. Misiewicz: Photoreflectance and contactless electroreflectance spectroscopy of GaAs-based structures: The below band gap oscillation features. Appl. Surf. Sci. 253, 266 (2006).
  • [62] M. Motyka, R. Kudrawiec, and J. Misiewicz: On the deepness of contactless electroreflectance probing in semiconductor structures. Phys. Stat. Sol. (a) 204, 354 (2007).
  • [63] P. J. Klar, C. M. Townsley, D. Wolverson, J. J. Davies, D. E. Ashenford, and B. Lunn: Photomodulated reflectivity of ZnTe/Zn1-xMnxTe multiple quantum wells with below-bandgap excitation. Semicond. Sci. Technol. 10, 1568 (1995).
  • [64] R. Kudrawiec, M. Rudziński, J. Serafinczuk, M. Zając, and J. Misiewicz: Photoreflectance study of exciton energies and linewidths for homoepitaxial and heteroepitaxial GaN layers. J. Appl. Phys. 105, 093541 (2009).
  • [65] J. Misiewicz, G. Sęk, R. Kudrawiec, and P. Sitarek: Photo-modulated reflectance and transmittance: optical characterization of novel semiconductor materials and device structures. Thin Solid Films 450, 14 (2004).
  • [66] R. Kudrawiec, M. Syperek, M. Motyka, J. Misiewicz, R. Paszkiewicz, B. Paszkiewicz, and M. Tłaczała: Contactless electromodulation spectroscopy of AlGaN/GaN heterostructures with a two-dimensional electron gas: A comparison of photoreflectance and contactless electroreflectance. J. Appl. Phys. 100, 013501 (2006).
  • [67] M. Motyka, R. Kudrawiec, M. Syperek, J. Misiewicz, M. Rudziński, P. Hageman, and P. K. Larsen: Screening effect in contactless electroreflectance spectroscopy observed for AlGaN/GaN heterostructures with 2DEG. Thin Solid Films 515, 4662 (2007).
  • [68] R. Kudrawiec, E.-M. Pavelescu, J. Andrzejewski, J. Misiewicz, A. Gheorghiu, T. Jouhti, and M. Pessa: The energy-fine structure of GaInNAs/GaAs multiple quantum wells grown at different temperatures and post-grown annealed. J. Appl. Phys. 96, 2909 (2004).
  • [69] R. Kudrawiec, E.-M. Pavelescu, J. Wagner, G. Sęk, J. Misiewicz, M. Dumitrescu, J. Konttinen, A. Gheorghiu, and M. Pessa: The photoreflectance evidence of multiple band gaps in dilute GaInNAs layers lattice-matched to GaAs. J. Appl. Phys. 96, 2576 (2004).
  • [70] R. Kudrawiec, G. Sęk, K. Ryczko, and J. C. Harmand: Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells. Appl. Phys. Lett. 84, 3453 (2004).
  • [71] N. Kallergi, B. Roughani, J. Aubel, and S. Sundaram: Correlation of interference effects in photoreflectance spectra with GaAs homolayer thickness. J. Appl. Phys. 68, 4656 (1990).
  • [72] H. K. Lipsanen and V. M. Airaksinen: Interference effects in photoreflectance of epitaxial layers grown on semi-insulating substrates. Appl. Phys. Lett. 63, 2863 (1993).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0027-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.