Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Image segmentation is a fundamental process employed in many applications of pattern recognition, video analysis, computer vision and image understanding in order to allow further image content exploitation in an efficient way. It is often used to partition an image into separate regions. As recent trends in image segmentation show, the use of artificial and/or computational intelligence (AI and/or CI) techniques has become more popular as an alternative to the conventional techniques. In this paper, we present an extensive and comprehensive review of the image processing area for advanced researchers. This study introduces the theoretical fundamentals of image segmentation using AI and/or CI techniques based on fuzzy logic (FL), genetic algorithm (GA) and artificial neural networks (ANN). Besides, this survey examines the applications of these techniques in different image segmentation areas. In the literature, these techniques are used as an interpretation tool for segmentation. In our study, these tools are focused on because of their capabilities, such as robustness, segmentation accuracy and low computational costs. Moreover, we review 56 remarkable studies from the last decade (i.e., the years between 2001 and 2010), which involve different image segmentation approaches using FL, GAs, ANNs and hybrid intelligent systems (HISs). In our state-of-the-art survey, the comparison of the reviewed papers in related categories is made based on both the corresponding properties of segmentation as well as performance evaluation of the related method proposed in a given reviewed paper. The results and recent trends are also discussed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
367--409
Opis fizyczny
Bibliogr. 136 poz., tab., wykr.
Twórcy
autor
autor
- Canakkale OnSekiz Mart University, Faculty of Engineering and Architecture, Department of Computer Engineering, Terzioglu Kampusu, 17020, Canakkale, Turkey, bahadirkarasulu@comu.edu.tr
Bibliografia
- [1] McCulloch W. S., Pitts W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 1943, 5. 115-133.
- [2] Zadeh L. A.: Fuzzy sets. Inform Control 8 338-53, 1965.
- [3] Minsky M., Papert S.: Perceptrons: An Introduction to Computational Geometry. The MIT Press, Cambridge. Massachusetts, USA, 1969.
- [4] Holland J. H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, Michigan. USA, 1975.
- [5] Williams G. W.: Comparing the joint agreement of several raters with another rater. Biometrics 32 (3) 619-627, 1976.
- [6] Pavlidis T.: Structural Pattern Recognition. Springer Verlag, Berlin, Germany, 1977.
- [7] Otsu N.: A threshold selection method from gray-level histograms. IEEE Transactions on Syst., Man and Cybern. 9 (1) 62-66, 1979.
- [8] Bezdek J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, USA, 1981.
- [9] Hopfield J. J.: Neural networks and to physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79 pp. 2554-2558, 1982.
- [10] Nilsson N. J.: Principles of Artificial Intelligence. Springer Verlag, Berlin, Germany, 1982.
- [11] Burt P. J.: The pyramid as a structure for efficient computation. In: A. Rosenfeld, editor. Multiresolution image processing and analysis, Springer, New York, 12 pp. 6-35, 1984.
- [12] Kohonen T.: Self-organization and associative memory. Springer-Verlag, Berlin, Germany, 1984.
- [13] Rumelhart D. E., McClelland J. L.: The PDP research group, parallel distributed processing: explorations in the microstructure of cognition. MIT Press/Bradford Books, Cambridge, Massachusetts, USA, 1986.
- [14] Kass M., Witkin A., Terzopoulos D.: Snakes: active contour models. Int. J. of Computer Vis. 1 (4) 321-331, 1988.
- [15] Goldberg D. E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, Massachusetts, USA, 1989.
- [16] Machado R. J., Rocha A. F.: A hybrid architecture for fuzzy connectionist expert systems. In A. Kandel and G. Langholz, (Eds.), Hybrid architectures for intelligent systems, CRC Press. Boca Raton, Florida, USA, pp. 135-152, 1992.
- [17] Michalewicz Z.: Genetic algorithms + Data Structures = Evolution Programs. Springer. Berlin, 1992.
- [18] Pal N. R., Pal S. K.: A review on image segmentation techniques. Pattern Recognition 26 1277-1294, 1993.
- [19] Ronfard R.: Region based strategies for active contour models. Int. J. of Computer Vis. 13 (2) 229-251, 1994.
- [20] Guil N., Villalba J., Zapata E. L.: A fast Hough transform for segment detection. IEEE Transactions on Image Process. 4 (11) 1541-1548, 1995.
- [21] Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic: Theory and Application. Prentice Hall, Upper Saddle River. New Jersey, USA, 1995.
- [22] Lo R., Tsai W.: Gray-scale hough transform for thick line detection in gray-scale images. Pattern Recognition 28 (5) 647-661, 1995.
- [23] Medsker L. R.: Hybrid intelligent systems, Kluwer Academic Publishers. Norwell, Massachusetts. USA., 1995
- [24] Trier O. D., Jain A. K.: Goal-directed evaluation of binarization methods. IEEE Transactions on Pattern Analysis and Mach. Intelligence, 17 (9) 1191-1201, 1995.
- [25] Robert F.: Neural Fuzzy Systems. Abo Akademi University Press, Finland, 1995.
- [26] Krose B., Smagt P. V. D.: An Introduction to Neural Networks, Eighth ed. The University of Amsterdam Press, Amsterdam, Netherlands., 1996
- [27] Zhang Y.: A survey on evaluation methods for image segmentation. Pattern Recognition 29 (8) 1335-1346, 1996.
- [28] Zimmermann J. H.: Fuzzy Set Theory and Its Applications. Kluwer Academic Publishers. Norwell, Massachusetts, USA, 1996.
- [29] Abak T., Baris U., Sankur B.: The performance of thresholding algorithms for optical character recognition. Proceedings of Int. Conf. on Document Analysis and Recognition ICDAR'97, 697-700, 1997.
- [30] Chalana V., Kim Y.: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Transactions on Medical Imaging, 16 (5) 642-652, 1997.
- [31] Heath M., Sarkar S., Sanocki T., Bowyer K. W.: A robust visual method for assessing the relative performance of edge detection algorithms. IEEE Transactions on Pattern Analysis and Mach. Intelligence 19 (12) 1338-1359, 1997.
- [32] Jang J-S. R., Sun C-T., Mizutani E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, New Jersey, USA, 1997.
- [33] Kohonen T.: Self-Organizing Maps. Springer-Verlag, Berlin, Germany, 1997.
- [34] Bowyer K. W., Phillips P. J.: Empirical evaluation techniques in computer vision. Wiley-IEEE Computer Society Press, Los Alamitos, California, USA, 1998.
- [35] Brejl M., Sonka M.: Edge-based image segmentation: machine learning from examples. Proceedings of 1998 IEEE Int. Joint Conf.-IEEE World Congress on Computational Intelligence - Neural Networks 2 pp. 814-819, 1998.
- [36] Jain L. C., Martin N. M.: Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms: Industrial Applications. CRC Press, Boca Raton, Florida, USA, 1998.
- [37] Comaniciu D., Meer P.: Mean Shift Analysis and Applications. Proceedings of IEEE Int. Conf. on Computer Vis., Kerkyra, Greece pp. 1197-1203, 1999.
- [38] Haykin S.: Neural Networks: A Comprehensive Foundation. New York: Macmillan, 1999.
- [39] Yu Y., Wang J.: Image segmentation based on region growing and edge detection. Proceedings of IEEE Int. Conf. on Systems, Man, and Cybernetics, 6 pp. 798-803, 1999.
- [40] Bertalmio M., Sapiro G., Randall G.: Morphing active contours. IEEE Transactions on Pattern Analysis and Mach. Intelligence 22 (7) 733-737, 2000.
- [41] Jahne B., Haussecker H.: Computer Vision and Applications: A Guide for Students and Practitioners, First ed. Academic Press, San Diego, USA, 2000.
- [42] Nguyen H. T., Walker E. A.: A first course in fuzzy logic. Chapman & Hall/CRC, Boca Raton, Florida, USA, 2000.
- [43] Sezgin M.. Tasaltin R.: A new dichotomization technique to multilevel thresholding devoted to inspection applications. Pattern Recognition Letters 21 (2) 151-161, 2000.
- [44] Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Mach. Intelligence 22 (8) 888-905, 2000.
- [45] Chang C-Y., Chung P-C.: Medical image segmentation using a contextual-constraint-based Hopfield neural cube. Image and Vision Computing 19 (9-10) 669-678, 2001.
- [46] Fletcher-Heath L. M., Hall L. O., Goldgof D. B., Murtagh F. R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine 21 (1-3) 43-63, 2001.
- [47] Hirano S., Hata Y.: Fuzzy expert system for foot CT image segmentation. Image and Vis. Computing 9 (4) 207-216, 2001.
- [48] Hopgood A. A.: Intelligent systems for engineers and scientists, CRC Press, Boca Raton, Florida, USA, 2001.
- [49] Kobashi S., Kamiura N., Hata Y., Miyawaki F.: Volume-quantization-based neural network approach to 3D MR angiography image segmentation. Image and Vision Computing 19 (4) 185-193, 2001.
- [50] Nannariello J., Frike F. R.: Introduction to neural network analysis and its applications to building services engineering. Building Services Engineering Research and Technology 22 (1) 58-68, 2001.
- [51] Sang N., Zhang T.: Segmentation of FLIR images by Hopfield neural network with edge constraint. Pattern Recognition 34 (4) 811-821, 2001.
- [52] Shin M. C., Goldgof D. B., Bowyer K. W.: Comparison of edge detector performance through use in an object recognition task. Computer Vision and Image Understanding 84 (1) 160-178, 2001.
- [53] Yu H. H., Jenq-Neng H.: Handbook of neural network signal processing. CRC Press, Newyork, USA, 2001.
- [54] Ahmed M. N., Yamany S. M., Mohamed N., Farag A. A., Moriarty T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging 21 (3) 193-199, 2002.
- [55] Boskovitz V., Guterman H.: An adaptive neuro-fuzzy system for automatic image segmentation and edge detection, IEEE Transactions on Fuzzy Systems 10 (2) 247-262, 2002.
- [56] Chen K., Wang D., A dynamically coupled neural oscillator network for image segmentation, Neural Networks 15 (3) 423-439, 2002.
- [57] Colin R. R., Jonathan E. R.: Genetic algorithms-principles and perspectives, a guide to GA theory. Kluwer Academic Publishers, Norwell, Massachusetts, USA, 2002.
- [58] Comaniciu D., Meer P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Mach. Intelligence 24 (5) 603-619, 2002.
- [59] Dokur Z., Olmez T.: Segmentation of ultrasound images by using a hybrid neural network, Pattern Recognit. Letters 23 (14) 1825-1836, 2002.
- [60] Fan Y., Jiang T., Evans D. J.: Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Transactions on Medical Imaging. 21 (8) 904-909, 2002.
- [61] Gonzalez R. C, Woods R. E.: Digital Image Processing, Second ed. Prentice Hall Inc.. Upper Saddle River, New Jersey, USA, 2002.
- [62] Karmakar G. C., Dooley L. S.: A generic fuzzy rule based image segmentation algorithm. Pattern Recognition Letters 23 (10) 1215-1227, 2002.
- [63] Lucht R., Delorme S., Brix G.: Neural network-based segmentation of dynamic MR mammographic images, Magnetic Resonance Imaging 20 (2) 147-154, 2002.
- [64] Tsakonas A., Dounias G.: Hybrid computational intelligence schemes in complex domains: an extended review, In I.P. Vlahavas and C. D. Spyropoulos, (Eds.), Proceedings of the 2nd Hellenic Conf. on Artificial Intelligence (SETN 2002), LNAI 2308, Thessaloniki, Greece pp. 494-511, 2002.
- [65] Yang J-F., Hao S-S., Chung P-C.: Color image segmentation using fuzzy C-means and eigenspace projections. Signal Processing 82 (3) 461-472, 2002.
- [66] Yang M-S., Hu Y-J., Lin K. C-R., Lin C. C-L.: Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms. Magnetic Resonance Imaging 20 (2) 173-179, 2002.
- [67] Kalogirou S. A.: Artificial intelligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science 29 515-66, 2003.
- [68] Lin K. C-R., Yang M-S., Liu H-C., Lirng J-F., Wang P-N.: Generalized Kohonen's competitive learning algorithms for ophthalmological MR image segmentation. Magnetic Resonance Imaging 21 (8) 863-870, 2003.
- [69] Nunez J., Llaccr J.: Astronomical image segmentation by self-organizing neural networks and wavelets. Neural Networks 16 (3-4) 411-417, 2003.
- [70] Russell S.J., Norvig P.: Artificial Intelligence: A Modern Approach, Second ed. Pearson Education Inc., Upper Saddle River, New Jersey, USA, 2003.
- [71] Tao W-B., Tian J-W., Liu J.: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognit. Letters, 24 (16) 3069-3078, 2003.
- [72] Taur J.S.: Neuro-Fuzzy Approach to the Segmentation of Psoriasis Images, The Journal of VLSI Signal Processing 35 (1) 19-27, 2003.
- [73] Li Y., Lu D., Lu X., Liu J.: Interactive color image segmentation by region growing combined with image enhancement based on Bezier model. Proceedings of Third Int. Conf. on Image and Graphics pp. 96-99, 2004.
- [74] Sezgin M., Sankur B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13 (1) 146-165, 2004.
- [75] Zhang D-Q., Chen S-C.: A novel kernelized fuzzy C-means algorithm with application in medical image segmentation, Artificial Intelligence in Medicine 32 (1) 37-50, 2004.
- [76] Admiraal-Behloul F., Van den Heuvel D. M .J., Olofsen H., Van Osch M. J. P., Van der Grond J., Van Buchem M. A., Reiber J. H. C.: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neurolmage 28 (3) 607-617, 2005.
- [77] Lee H. L.: First Course on Fuzzy Set Theory and Applications. Springer-Verlag, Berlin, Germany, 2005.
- [78] Negnevitsky M.: Artificial Intelligence - A Guide to Intelligent Systems, Second Ed, Pearson Education Limited, Edinburgh Gate, Harlow, Essex, England, 2005.
- [79] Tizhoosh H. R.: Image thresholding using type II fuzzy sets. Pattern Recognition 38 (12) 2363-2372, 2005.
- [80] Benatchba K., Koudil M., Boukir Y., Benkhelat N.: Image segmentation using quantum genetic algorithms. Proceedings of 32nd Annual Conf. on IEEE Industrial Electronics, pp. 3556-3563, 2006.
- [81] Chen S., Li D.: Image binarization focusing on objects. Neurocomputing 69 (16-18) 2411-2415, 2006.
- [82] Demirci R.: Rule-based automatic segmentation of color images. AEU - International Journal of Electronics and Communications 60 (6) 435-442, 2006.
- [83] Ghosh P., Mitchell M.: Segmentation of medical images using a genetic algorithm. Proceedings of the 8th annual conference on Genetic and evolutionary computation, Seattle, Washington, USA, pp. 1171-1178, 2006.
- [84] Ng H. P., Ong S. H., Foong K. W. C., Goh P. S., Nowinski W. L.: Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm. Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation pp. 61-65, 2006.
- [85] Soria-Frisch A.: Unsupervised construction of fuzzy measures through self-organizing feature maps and its application in color image segmentation, International Journal of Approximate Reasoning, Aggregation Operators and Decision Modeling 41 (1) 23-42, 2006.
- [86] Strzecha K., Fabijanska A., Sankowski D.: Application Of The Edge-Based Image Segmentation. Proceedings of the 2nd Int. Conf. on Perspective Technologies and Methods in MEMS Design pp. 28-31, 2006.
- [87] Wang W., Song H., Zhao Q.: A modified Watersheds Image Segmentation Algorithm for Blood Cell. Proceedings of Int. Conf. on Communications, Circuits and Systems 1 450-454, 2006.
- [88] Al-Rawi M., Karajeh H.: Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images. Computer Methods and Programs in Biomedicine 87 (3) 248-253, 2007.
- [89] Bleyer M., Gelautz M.: Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions. Signal Processing: Image Communication, Special issue on three-dimensional video and television, 22 (2) 127-143, 2007.
- [90] Colantonio S., Gurevich I., Salvetti O.: Automatic Fuzzy-neural Based Segmentation of Microscopic Cell Images, Proceedings of the Int. Conf. of Mass Data Analysis 2006/2007, Leipzig, Germany pp. 115-127, 2007.
- [91] Graupe D.: Principles of Artificial Neural Networks. World Scientific Press, Singapore, 2007.
- [92| Guo Y., Bai Z., Li Y., Liu Y.: Genetic Algorithm and Region Growing Based Road Detection in SAR Images. Proceedings.pf Third Int. Conf. on Natural Computation 4 pp. 330-334, 2007.
- [93] Kurnaz M.N., Dokur Z., Olmez T.: An incremental neural network for tissue segmentation in ultrasound images. Computer Methods and Programs in Biomedicine 85 (3) 187-195, 2007.
- [94] Mansoor A. B., Mian A. S., Khan A., Khan S. A.: Fuzzy Morphology for Edge Detection and Segmentation. Proceedings of Third Int. Symposium (ISVC 2007), Lake Tahoe, Nevada, USA, pp. 811-821, 2007.
- [95] Prados-Suarez B., Chamorro-Martnez J., Snchez D., Abad J.: Region-based fit of color homogeneity measures for fuzzy image segmentation. Fuzzy Sets and Systems 158 (3) 215-229, 2007.
- [96] Pratt W. K.: Digital image processing: PIKS Scientific inside. Fourth ed. Wiley-Interscience, Hobo-ken. New Jersey, USA, 2007.
- [97] Russ J. C.: The image processing handbook, fifth ed. Taylor & Francis Group, LLC, CRC Press, Boca Raton, Florida, USA, 2007.
- [98] Wang C-M., Wang S-Z., Zhang C-M., Zou J-Z.: Maximum Variance Image Segmentation Based on Improved Genetic Algorithm. Proceedings of Eighth ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 2 pp. 491-494, 2007.
- [99] Balafar M. A., Ramli A. R.. Saripan M. I., Mahmud R., Mashohor S.: Medical image segmentation using Fuzzy C-Mean (FCM) and dominant grey levels of image. Proceedings of 5th Int. Conf. On Visual Information Engineering pp. 314-317, 2008.
- [100] Bradski G., Kaehler A.: Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, Inc., Sebastopol, California, USA, 2008.
- [101] Caponetti L., Castiello C., Grecki P.: Document page segmentation using neuro-fuzzy approach, Applied Soft Computing 8 (1) 118-126, 2008.
- [102] Chen T., Chen Y., Chien S.: Fast image segmentation based on K-Means clustering with histograms in HSV color space. Proceedings of IEEE 10th Workshop on Multimedia Signal Processing pp. 322-325, 2008.
- [103] Dokur Z.: A unified framework for image compression and segmentation by using an incremental neural netwqrk. Expert Systems with Applications, 34 (1) 611-619, 2008.
- [104] Dokur Z., Olmez T.: Tissue segmentation in ultrasound images by using genetic algorithms. Expert Systems with Applications, 34 (4) 2739-2746, 2008.
- [105] Hammouche K., Diaf M., Siarry P.: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Computer Vision and Image Understanding 109 (2) 163-175, 2008.
- [106] Hsu C-Y., Liu C-Y., Chen C-M.: Automatic segmentation of liver PET images. Computerized Medical Imaging and Graphics 32 (7) 601-610, 2008.
- [107] Huang C., Yan B., Jiang H., Wang D.: MR Image Segmentation Based On Fuzzy C-Means Clustering and the Level Set Method. Proceedings of Fifth Int. Conf. on Fuzzy Systems and Knowledge Discovery 1 pp. 67-71, 2008.
- [108] Hui L., Shi C., Min-si A., Yi-qi W.: Application of an Improved Genetic Algorithm in Image Segmentation. Int. Conf. on Computer Science and Software Engineering 3 pp. 898-901, 2008.
- [109] Jungnickel D.: Graphs, Networks and Algorithms: Third Edition. Springer publication, Berlin, Heidelberg, New York, 2008.
- [110] Kuo W-F., Lin C-Y., Sun Y-N.: Brain MR, images segmentation using statistical ratio: Mapping between watershed and competitive Hopfield clustering network algorithms. Computer Methods and Programs in Biomedicine 91 (3) 191-198, 2008.
- [111] Mellit A., Kalogirou S.A.: Artificial intelligence techniques for photovoltaic applications: A review. Progress in Energy and Combustion Science 34 574-632, 2008.
- [112] Monteiro F. C., Campilho A.: Watershed framework to region-based image segmentation. Proceedings of 19th Int. Conf. on Pattern Recognition pp. 1-4, 2008.
- [113] Sonka M., Hlavac V., Boyle R.: Image Processing, Analysis, and Machine Vision, International Student Edition, Third ed. Thomson Learning, Thomson Publishing, Toronto, Canada, 2008.
- [114] Todorovic S., Ahuja N.: Region-Based Hierarchical Image Matching. Int. J. of Computer Vis. 78 A) 47-66, 2008.
- [115] Yeh J-Y., Fu J.C.: A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI, Expert Systems with Applications 34 (2) 1285-1295, 2008.
- [116] Zhang H., Fritts J. E., Goldman S. A.: Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding 110 (2) 260-280, 2008.
- [117] Zhou Y., Yang A., Jiang S.: A Region-Based Image Segmentation Approach with KMC Algorithm of Automatic Determination K. Proceedings of Int. Conf. on Intelligent Computation Technology and Automation 2 pp. 95-99, 2008.
- [118] Araujo A. R. F., Costa D. C.: Local adaptive receptive field self-organizing map for image color segmentation. Image and Vision Computing 27 (9) 1229-1239, 2009.
- [119] Celikyilmaz A., Turksen I. B.: Modeling Uncertainty with Fuzzy Logic with Recent Theory and Applications. Springer-Verlag, Berlin, 2009.
- [120] Hore P., Hall L. O., Goldgof D. B., Gu Y., Maudsley A. A., Darkazanli A.: A Scalable Framework For Segmenting Magnetic Resonance Images. Journal of Signal Processing Systems 54 (1) 183-203, 2009.
- [121] Iscan Z., Yuksel A., Dokur Z., Korurek M., Olmez T.: Medical image segmentation with transform and moment based features and incremental supervised neural network. Digital Signal Processing 19(5) 890-901, 2009.
- [122] Jing Z.: Image Segmentation Using Possibilistic C Means Based on Particle Swarm Optimization. Proceedings of WRI Global Congress on Intelligent Systems, 1 pp. 119-123, 2009.
- [123] Kang J., Min L., Luan Q., Li X., Liu J.: Novel modified fuzzy c-means algorithm with applications. Digital Signal Processing 19 (2) 309-319, 2009.
- [124] Lai C-C., Chang C-Y.: A hierarchical evolutionary algorithm for automatic medical image segmentation. Expert Systems with Applications 36 (1) pp. 248-259, 2009.
- [125] Shaaban K. M., Omar N. M.: Region-based Deformable Net for automatic color image segmentation. Image and Vis. Computing, Special Section, Computer Vis. Methods for Ambient Intelligence 27 (10) 1504-1514, 2009.
- [126] Wuest B., Zhang Y.: Region based segmentation of QuickBird multispectral imagery through band ratios and fuzzy comparison. ISPRS J. of Photogrammetry and Remote Sensing 64 (1) 55-64, 2009.
- [127] Yuen, C. W. M., Wong W. K., Qian S. Q., Chan L. K., Fung E. H. K.: A hybrid model using genetic algorithm and neural network for classifying garment defects, Expert Systems with Applications, 36 (2) Part 1 2037-2047, 2009.
- [128] Zheng L., Zhang J., Wang Q.: Mean-shift-based color segmentation of images containing green vegetation. Computers and Electronics in Agriculture 65 (1) 93-98, 2009.
- [129] Al Hamad H. A., Zitar R. A.: Development of an efficient neural-based segmentation technique for Arabic handwriting recognition. Pattern Recognition 43 (8) 2773-2798, 2010.
- [130] Caldairou B., Passat N., Habas P. A., Studholme C., Rousseau F.: A non-local fuzzy segmentation method: Application to brain MRI. Pattern Recognition, In Press. Corrected Proof, DOI: 10.1016/j.patcog.2010.06.006, 2010.
- [131] Chen C-L., Tai C-L.: Adaptive fuzzy color segmentation with neural network for road detections, Engineering Applications of Artificial Intelligence, 23 (3) 400-410, 2010.
- [132] Forouzanfar M., Forghani N., Teshnehlab M.: Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation, Engineering Applications of Artificial Intelligence. 23 (2) 160-168, 2010.
- [133] Fu J. C., Chen C. C., Chai J. W., Wong S. T. C., Li I.C.: Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging. Computerized Medical Imaging and Graphics 34 (4) 308-320, 2010.
- [134] Hammouche K., Diaf M., Siarry P.: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Engineering Applications of Artificial Intelligence, Advances in metaheuristics for hard optimization: new trends and case studies 23 (5) 676-688, 2010.
- [135] Kannan S. R., Ramathilagam S., Sathya A., Pandiyarajan R.: Effective fuzzy c-means based kernel function in segmenting medical images. Computers in Biology and Medicine 40 (6) 572-579, 2010.
- [136] Vera M., Bravo A., Medina R.: Myocardial border detection from ventriculograms using support vector machines and real-coded genetic algorithms. Computers in Biology and Medicine 40 (4) 446-455, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0024-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.