PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Inverse Linear and Nonlinear Models in the Identification of Rail Track Irregularities

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an application of the loading force identification method, based on the inversion of regressive parametric models, in the reconstruction of rail irregularities. The irregularities are identified from the accelerations of vibration signals measured on the axle boxes of the vehicles in motion. The experimental test results showed that, in the case of measurement data corrupted by noise, nonlinear models provide a slightly better accuracy of inversion than linear ones. In the paper both numerical and experimental verification of the method are shown.
Rocznik
Strony
47--62
Opis fizyczny
Bibliogr. 25 poz., il., wykr.
Twórcy
autor
autor
  • AGH University of Science and Technology, Department of Robotics and Mechatronics, pczop@tenneco.com
Bibliografia
  • Thompson, D., 2009, Railway Noise and Vibration - Mechanisms, Modelling and Means of Control, Elsevier.
  • Dings, P., Verheijen, E., Kootwijk-Damman, C., 2000, A trafic-dependent Acoustical Grinding Criterion, Journal of Sound and Vibrations, 213 (3), 941-949.
  • Berggren, E. G., Martin, X. D., Spannar, J., 2008, A new approach to the analysis and presentation of vertical track geometry quality and rail roughness, Wear, Elseviere, 265, 9-10, 1488-1496.
  • Gullersa, P., Anderssona, L., Lundenb, R., 2008., High-frequency vertical wheel - rail contact forces - Field measurements and influence of track irregularitie, Wear, Elsevier, 265,9-10, 1465-1471.
  • Nielsen, J. C. O., 2008, Rail Roughness Level Assessment Based on High-Frequency Wheel-Rail Contact Force Measurements, Springer Berlin/Heidelberg, 99.
  • Directives on railway interoperability for high-speed rail (Council Directive 96/48/EC of 23 July 1996 on the interoperability of the trans-European high-speed rail system, OJ L 235, 17.9.1996).
  • Directives on conventional rail (Directive 2001/16/EC of the European Parliament and of the Council of 19 March 2001 on the interoperability of the trans-European conventional rail system OJ L 110, 20.4.2001).
  • Commission decision 2002/735/EC of 30 May 2002 concerning the technical specification for interoperability relating to the rolling stock subsystem of the trans-European high-speed rail system referred to in Article 6 (1) of Directive 96/48/EC, OJ L 245, 12.9.2002. European Standard prEN 13848-5: Railway Applications-Track-Track Geometry Quality-Part 5: Geometric Quality Assessment, submitted to CEN Members for Enquiry, May 2005.
  • Uhl, T., Mendrok, K., Chudzikiewicz, A., 2009, Rail track and rail vehicle intelligent monitoring system, Structural health monitoring 2009: from system integration to autonomous systems, Proceedings of the 7th international workshop on Structural health monitoring, Stanford, CA, 617-624.
  • Piazzi, A., Visioli, A., 2001, Robust set-point constrained regulation via dynamic inversion, Int. J. Robust Nonlinear Control, 11 (1), 1-22.
  • Moscinski, J., Ogonowski, Z., 1995, Advanced control with MATLAB & SIMULINK, Ellis Horwood Ltd, UK.
  • Elster, C., Link, A., Bruns, T., 2007, Analysis of dynamic measurements and determination of measurement uncertainty using a second-order model, Meas. Sci. Technol. 18 3682-7.
  • Uhl, T., 2007, The inverse identification problem and its technical application, Archive of Applied Mechanics, 11 (5), 325-337.
  • Mendrok, K., Uhl, T., 2004, Overview of modal model based damage detection methods, Proceedings of the 29th International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, 561-576.
  • Bracciali, G., Cascini, G., 1998, High-frequency mobile input reconstruction algorithm (HF-MIRA) applied to forces acting on a damped linear mechanical system, Mechanical Systems and Signal Processing, 21 (2), 255-268.
  • Raath, D., Van Waveren, C. C., 1998, A time domain approach to load reconstruction for durability testing, Engineering Failure Analysis, 4 (1), 113-119.
  • Torfs, J., Swevers, J., De Schutter, J., 1991, Quasi-Perfect Tracking Control Of Non-Minimal Phase Systems, Proceedings of the 30th Conference on Decision and Control, Brighton, England, 241-244.
  • Hundhausen, R. J., Adams, D. E., Derriso, M., Kukuchek, P., Alloway, R., 2005, Transient Loads Identification for a Standoff Metallic Thermal Protection System Panel, in: 23rdInternational, Modal Analysis Conference (IMACXXIII), Orlando, Florida.
  • Hollandsworth, P. E., Busby, H. R., 1989, Impact force identification using the general inverse technique, International Journal of Impact Engineering, 8, 315-322.
  • Ljung, L., 1999, System Identification - Theory for the User, Prentice-Hall.
  • Allena, M. S., Carne, T. G., 2008, Multi-step inverse structural filter for robust force identification, Mechanical Systems and Signal Processing, 22 (5), 1036-1054.
  • Chan, T. H. T., Law, S. S., Zeng, Q. H., 1997, Moving force identification: a time domain method, Journal of Sound and Vibration, 201, 1-22.
  • Chen, T. C., Lee, M. H., 2008, Research on Moving Force Estimation of the Bridge Structure using the Adaptive Input Estimation Method, J. of Structural engineering, 8.
  • Billings, S. A., Chen, S. 1989, Representation of nonlinear systems: the NARMAX model, Int. J. of Control, 49 (3), 1013-1032.
  • Norgaard, M., Ravn, O., Poulsen, N. K., 2000, Neural network for modeling and control of dynamic systems, Springer-Verlag, London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0024-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.