Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Języki publikacji
Abstrakty
The article presents numerical investigations of high-contrast grating mirrors. First, it shows the basis of a new numerical method for computing the parameters of the grating and next it describes the results of the analysis of the manufacturing imperfections impact on the reflection coefficient. Finally, it shows the considerations on the performance of high-contrast gratings in typical designs of VCSELs.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
340--345
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
- Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 90-924 Łódź, Poland, maciej.dems@p.lodz.pl
Bibliografia
- [1] D. Rosenblatt, A. Sharon, and A.A. Friesem, “Resonant grating waveguide structures”, IEEE J. Quantum Elect. 33, 2038-2059 (1997).
- [2] S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's”, IEEE Photonic. Tech. L. 10, 1205-1207 (1998).
- [3] H.T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J.L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers”, Opt. Express 11, 1799-1808 (2003).
- [4] C.F.R. Mateus, M.C.Y. Huang, Y. Deng, A.R. Neureuther, and C.J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating”, IEEE Photonic. Tech. L. 16, 518-520 (2004).
- [5] S. Boutami, B. Ben Bakir, J.L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, and P. Viktorovitch, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter”, Opt. Express 14, 3129-3137 (2006).
- [6] S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence”, IEEE Photonic. Tech. L. 18, 835-837 (2006).
- [7] S. Boutami, B. Benbakir, J.L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 µm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror”, Appl. Phys. Lett. 91, 071105 (2007).
- [8] M.C.Y. Huang, Y. Zhou, and C.J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers”, Appl. Phys. Lett. 92, 171108 (2008).
- [9] M. Amann, “Tuning triumph”, Nat. Photonics 2, 134-135 (2008).
- [10] M.C.Y. Huang, Y. Zho, and C.J. Chang-Hassain, “A nanoelectromechanical tunable laser”, Nat. Photonics 2, 180-184 (2008).
- [11] G.P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers”, Phys. Rev. A63, 23816 (2001).
- [12] M. Dems, R. Kotynski, and K. Panajotov, “Plane-wave admittance method - a novel approach for determining the electromagnetic modes in photonic structures”, Opt. Express 13, 3196-3207 (2005).
- [13] M. Dems, “Plane-wave admittance method and its applications to modelling semiconductor lasers and planar photonic-crystal structures”, PhD Dissertation, Technical University of Łódź, 2007.
- [14] I.A. Goncharenko, S.F. Helfert, and R. Pregla, “Radiation loss and mode field distribution in curved holey fibers”, AEU-Int. J. Electron. C. 59, 185-191 (2005).
- [15] A.J. Danner, J.J. Raftery Jr., P.O. Leisher, and K.D. Choquette, “Single mode photonic crystal vertical cavity lasers”, Appl. Phys. Lett. 88, 091114 (2006).
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0032