PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase maps of polycrystalline human biological fluids networks : statistical, correlation, and fractal analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The complex statistical and fractal analysis of phase properties, inherent to birefringence networks of liquid crystals consisting of optically-thin layers, prepared from synovial fluid taken from human joints, is performed in this work. Within the framework of a statistical approach, the authors have investigated values and ranges for changes of statistical moments of the 1-st to the 4-th orders that characterize coordinate distributions for phase shifts between orthogonal components of amplitudes inherent to laser radiation, transformed by synovial fluid layers, for human joints with various pathologies. The correlation criteria for differentiation of phase maps, describing pathologically changed liquid-crystal networks, have been ascertained. In the framework of the fractal approach, dimensions of self-similar coordinate phase distributions as well as features of transformation of logarithmic dependences for power spectra of these distributions for various types of human joint pathologies are determined.
Twórcy
  • Correlation Optics Department, Chernivtsi National University, 2 Kotsyubinsky Str., 58012 Chernivtsi, Ukraine, yuriyu@gmail.com
Bibliografia
  • [1] A.G. Ushenko, and V.P. Pishak, “Laser polarimetry of biological tissue: principles and applications”, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, Vol. 1, pp. 93-138, edited by V.V. Tuchin, Kluwer Academic Publishers, 2004.
  • [2] G. Yao and L.V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography”, Opt. Lett. 24, 537-539 (1999).
  • [3] X. Wang, G. Yao, and L.V. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose”, Appl. Opt. 41, 792-801 (2002).
  • [4] A.G. Ushenko, “Polarization structure of laser scattering fields”, Opt. Eng. 34, 1088-1093 (1995).
  • [5] S. Jiao, G. Yao, and L.V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography”, Appl. Opt. 39, 6318-6324 (2000).
  • [6] S. Jiao and L.V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography”, Opt. Lett. 27, 101-103 (2002).
  • [7] A.G. Ushenko, “Laser diagnostics of biofractals”, Quantum Electron. 29, 1078-1084 (1999).
  • [8] S.G. Demos and R.R. Alfano, “Optical polarization imaging”, Appl. Opt. 36, 150-155 (1997).
  • [9] A.G. Ushenko, “The vector structure of laser biospeckle fields and polarization diagnostics of collagen skin structures”, Laser Phys. 10, 1143-1149 (2000).
  • [10] J.F. de Boer, T.E. Milner, M.J.C. van Gemert, and J.S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography”, Opt. Lett. 22, 934-936 (1997).
  • [11] A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces”, Optics Spectrosc. 92, 227-229 (2002).
  • [12] O.V. Angelsky, A.G. Ushenko, and Y.G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state”, J. Biomed Opt. 10, 060502 (2005).
  • [13] O.V. Angelsky, D.N. Burkovets, P.P. Maksimyak, and S.G. Hanson, “Applicability of the singular-optics concept for diagnostics of random and fractal rough surfaces”, Appl. Opt. 42, 4529-4540 (2003).
  • [14] A.G. Ushenko, I.Z. Misevich, V. Istratiy, I. Bachyns'ka, A.P. Peresunko, O.K. Numan, and T.G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes”, Advances in Optical Technologies 2010, 423145 (2010).
  • [15] O.V. Angelsky, D.N. Burkovets, A.V. Kovalchuk, and S.G. Hanson, “On the fractal description of rough surfaces”, Appl. Opt. 41, 4620-4629 (2002).
  • [16] O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko, and Y.Y. Tomka “Polarization singularities of biological tissues images”, J. Biomed. Opt. 11, 054030 (2006).
  • [17] O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, and Ye.G. Ushenko, “Polarization singularities of the object field of skin surface”, J. Phys. D: Appl. Phys. 39, 3547-3558 (2006).
  • [18] O.V. Angelsky, A.G. Ushenko, and Ye.G. Ushenko, “2-D stokes polarimetry of biospeckle tissues images in pre-clinic diagnostics of their pre-cancer states”, J. Holography Speckle 2, 26-33 (2005).
  • [19] A.G. Ushenko, “Stokes-correlometry of biotissues”, Laser Phys. 10, 1286-1292 (2000).
  • [20] O.V. Angelsky, G.V. Demianovsky, A.G. Ushenko, D.N. Burkovets, and Yu.A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes”, J. Biomed. Opt. 9, 679-690 (2004).
  • [21] O.V. Dubolazov, A.G. Ushenko, V.T. Bachynsky, A.P. Peresunko, and O.Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals”, Advances in Optical Technologies 2010, 162832 (2010).
  • [22] O.V. Angelsky, A.G. Ushenko, and Ye.G. Ushenko, “Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes”, Phys. Med. Biol. 50, 4811-4822 (2005).
  • [23] O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, Ye.G. Ushenko, Yu.Ya. Tomka, and V.P. Pishak, “Polarization-correlation mapping of biological tissue coherent images”, J. Biomed. Opt. 10, 064025 (2005).
  • [24] E.I. Olar, A.G. Ushenko, and Yu.A. Ushenko, “Correlation microstructure of the Jones matrices for multifractal networks of biotissues”, Laser Phys. 14, 1012-1018 (2004).
  • [25] O.V. Angelsky, A.G. Ushenko, D.N. Burcovets, and Yu.A. Ushenko, “Polarization visualization and selection of biotissue image two-layer scattering medium”, J. Biomed. Opt. 10, 014010 (2005).
  • [26] B.B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, W.H. Freeman, 1982.
  • [27] D.J. Whitehouse, “Fractal or fiction”, Wear 249, 345-353 (2001).
  • [28] O.V. Angel'skii, A.G. Ushenko, A.D. Arkhelyuk, S.B. Ermolenko, and D.N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals”, Quantum Electron. 29, 1074-1077 (1999).
  • [29] A.G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering”, Opt. Spectrosc. 91, 937-940 (2001).
  • [30] A.G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images”, Opt. Spectrosc. 91, 932-936 (2001).
  • [31] A.G. Ushenko, “Correlation processing and wavelet analysis of polarization images of biological tissues”, Opt. Spectrosc. 91, 773-778 (2002).
  • [32] A.G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers”, Opt. Spectrosc. 91, 313-316 (2001).
  • [33] O.V. Angelsky, P.P. Maksimyak, V.V. Ryukhtin, and S.G. Hanson, “New feasibilities for characterizing rough surfaces by optical-correlation techniques”, Appl. Opt. 40, 5693-5707 (2001).
  • [34] O.V. Angelsky, A.P. Maksimyak, P.P. Maksimyak, and S.G. Hanson, “Spatial behaviour of singularities in fractal- and gaussian speckle fields”, TheOpenOptics Journal 15, 29-43 (2009).
  • [35] O.V. Angelsky, S.G. Hanson, C.Yu. Zenkova, M.P. Gorsky, and N.V. Gorodyns'ka, “On polarization metrology (estimation) of the degree of coherence of optical waves”, Opt. Express 17, 15623-15634 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.