PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanostructuring of thin Au films by means of short UV laser pulses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10-20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160-412 mJ/cm². The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20-60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300-1800 cm⁻¹, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.
Twórcy
autor
autor
Bibliografia
  • [1] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995.
  • [2] M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, and R.L. Whetten, “Optical absorption spectra of nanocrystal gold molecules”, J. Phys. Chem. B101, 3706-3712 (1997).
  • [3] J. Yao, A.P. Le, S.K. Gray, J.S. Moore, J.A. Rogers, and R.G. Nuzzo, “Functional nanostructured plasmonic materials”, Adv. Mater. 22, 1102-1110 (2010).
  • [4] T. Ung, L.M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films”, Colloid Surface. A202, 119-126 (2002).
  • [5] M.A. Garcia, J. de la Venta, P. Crespo, J. Llopis, P. Penades, A. Fernandez, and A. Hernando, “Surface plasmon resonance of capped Au nanoparticles”, Phys. Rev. B72, 241403R (2005).
  • [6] Y.E. Guan and A.J. Pedraza, “Synthesis of aligned nanoparticles on laser-generated templates”, Nanotechnology 16, 1612 (2005).
  • [7] J. Koch, F. Korte, C. Fallnich, A. Ostendorf, and B.N. Chichkov, “Direct-write sub-wavelength structuring with femto-second laser pulses”, Opt. Eng. 44, 051103 (2005).
  • [8] P. Šmejkal, J. Pfleger, B. Vlčková, and O. Dammer, “Laser ablation of silver in aqueous ambient: effect of laser pulse wavelength and energy on efficiency of the process”, J. Phys: Conf. Ser. 59, 185-188 (2007).
  • [9] H. Cui, P. Liu, and G.W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering”, App. Phys. Lett. 89, 153-124 (2006).
  • [10] E. Diebold, N. Mack, S. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering”, Langmuir 25, 1790 (2009).
  • [11] S.J. Henley, J.D. Carey, and S.R. Silva, “Metal nanoparticle production by pulsed laser nanostructuring of thin metal films”, Appl. Surf. Sci. 253, 8080 (2007).
  • [12] S.E. Imamova, A. Dikovska, N.N. Nedyalkov, P.A. Atanasov, M. Sawczak, R. Jendrzejewski, G. Śliwiński, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy”, J. Optoelectron. Adv. M. 12, 500-504 (2010).
  • [13] N.N. Nedyalkov, S.E. Imamova, P.A. Atanasov, and M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: Application for surface modification”, Appl. Surf. Sci. 255, 5125-5129 (2009).
  • [14] J. Vosburgh and R.H. Doremus, “Optical absorption spectra of gold nano-clusters in potassium borosilicate glass”, J. Non-Cryst. Solids 349, 309-314 (2004).
  • [15] E.N. Boulos, L.B. Glebov, and T.V. Smirnova, “Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. I. Separation of ferrous and hydroxyl spectra in the near IR region”, J. Non-Cryst. Solids 221, 213-221 (1997).
  • [16] T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, and F. Trager, “Dephasing times of surface plasmon excitation in Au nanoparticles determined by persistent spectral hole burning”, Chem. Phys. Lett. 386, 319-324 (2004).
  • [17] M.L. Theye, “Investigation of the optical properties of Au by means of thin semitransparent films”, Phys. Rev. B2, 3060-3078 (1970).
  • [18] G. Li, H. Li, Y. Mo, X. Huang, and L. Chen, “Surface enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on silver electrode in lithium batteries”, Chem. Phys. Lett. 330, 249-254 (2000).
  • [19] I.I.S. Lim and C.J. Zhong, “Molecularly-mediated assembly of gold nanoparticles”, Gold Bull. 40, 59-66 (2007).
  • [20] M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules”, J. Phys. Chem. B104, 11965-11971 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.