PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of anomalous dispersion mirror properties on quantum efficiency of InGaAs/GaAs resonant cavity photodetector

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a theoretical analysis of the quantum efficiency of a resonant cavity enhanced InGaAs/GaAs p-i-n photodetector (PD) for the ultrashort optical connections. The numerical method of calculation of quantum efficiency combining a transfer matrix method and an energy conservation law is offered. Using anomalous dispersion (AD) mirror, flat-topped QE spectrum has been obtained. Conditions for ideal flat-topped spectral response have been received. A design with a maximum QE of 93.5% and 3-nm bandwidth at 0.02 dB below the peak is presented.
Twórcy
autor
autor
Bibliografia
  • [1] Y. Zhou, J. Cheng, and A.A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells”, IEEE Photonic. Tech. L. 12, 122-124 (2000).
  • [2] M.S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys. 78, 607-639 (1995).
  • [3] K. Liu, Y. Huang, and X. Ren, “Theory and experiments of a three-cavity wavelength-selective photodetector”, Appl. Optics 39, 4263-4269 (2000).
  • [4] I.S. Chung and Y.T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects”, IEEE Photonic. Tech. L. 18, 46-48 (2006).
  • [5] C.H. Chen, K. Tetz, and Y. Fainman, “Resonant-cavity-enhanced p-i-n photodiode with a broad quantum-efficiency spectrum by use of an anomalous-dispersion mirror”, Appl. Optics 44, 6131-6140 (2005).
  • [6] M. Bass, Handbook of Optics: Vol. 1 Fundamentals, Techniques, and Design, 2nd edition, McGraw-Hill, New York, 1995.
  • [7] Y. Zhou, J. Cheng, and A.A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells”, IEEE Photonic. Tech. L. 12, 122-124 (2000).
  • [8] S.V. Gryshchenko, A.A. Dyomin, and V.V. Lysak, “Theoretical study of the quantum efficiency of InGaAs/GaAs resonant cavity enhanced photodetectors”, Proc. Int. Workshop on Optoelectronic Physics and Technology, Kharkov, 20-22 (2007).
  • [9] S.V. Gryshchenko, A.A. Demin, and V.V. Lysak, “Quantum efficiency and reflection in resonant cavity photodetector with anomalous dispersion mirror”, 4th Int. Conf. on Advanced Optoelectronics and Lasers, Alushta, Crimea, 2008.
  • [10] S.V. Gryshchenko, A.A. Dyomin, V.V. Lysak, and I.A. Sukhoivanov, “Optical absorption and quantum efficiency in the resonant-cavity detector with anomalous dispersion layer”, 8th Int. Conf. on Numerical Simulation of Optoelectronic Devices, University of Nottingham, 2008.
  • [11] S. Adachi, Physical Properties of III-V Semiconductor Compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, John Wiley & Sons, Inc., 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.