PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal polar image sampling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a problem of efficient image sampling (deployment of image sensors) is considered. This problem is solved using techniques of two-dimensional quantization in polar coordinates, taking into account human visual system (HVS) and eye sensitivity function. The optimal radial compression function for polar quantization is derived. Optimization of the number of the phase levels for each amplitude level is done. Using optimal radial compression function and optimal number of phase levels for each amplitude level, optimal polar quantization is defined. Using deployment of quantization cells for the optimal polar quantization, deployment of image sensors is done, and therefore optimal polar image sampling is obtained. It is shown that our solution (the optimal polar sampling) has many advantages compared to presently used solutions, based on the log-polar sampling. The optimal polar sampling gives higher SNR (signal-to-noise ratio), compared to the log-polar sampling, for the same number of sensors. Also, the optimal polar sampling needs smaller number of sensors, to achieve the same SNR, compared to the log-polar sampling. Furthermore, with the optimal polar sampling, points in the image middle can be sampled, which is not valid for the log-polar sampling. This is very important since human eye is the most sensitive to these points, and therefore the optimal polar sampling gives better subjective quality.
Twórcy
  • Faculty of Electronic Engineering, University of Nis, 14 Aleksandra Medvedeva Str., 18000 Nis, Serbia
autor
  • Faculty of Electronic Engineering, University of Nis, 14 Aleksandra Medvedeva Str., 18000 Nis, Serbia
  • Faculty of Electronic Engineering, University of Nis, 14 Aleksandra Medvedeva Str., 18000 Nis, Serbia
Bibliografia
  • [1] H.R. Wu and K.R. Rao, Digital Video Image Quality and Perceptual Coding, Marcel Dekker Series in Signal Processing and Communications, 2005.
  • [2] A. Shortt, T. Naughton, and B. Javidi: Histogram approaches for lossy compression of digital holograms of three-dimensional objects. IEEE T. Image Process. 16, 1548-1556, 2007.
  • [3] S. Liu and A.C. Bovik: Foveation embedded DCT domain video transcoding. J. Vis. Commun. Image R. 16, 643-667, 2005.
  • [4] Z. Peric, M. Dincic, and A. Jovanovic: Optimal log-polar image sampling. J. Commun. Technol. El+. 54, 1397-1402, 2009.
  • [5] P.F. Swaszek: Uniform spherical coordinate quantization of spherically symmetric sources. IEEE T. Commun. 33, 518-521, 1985.
  • [6] P.W. Moo and D.L. Neuhoff: Uniform polar quantization revisited. Proc. IEEE Int. Symp. Information Theory ISIT'98, Cambridge, 1998.
  • [7] Z. Peric and M. Stefanovic: Asymptotic analysis of optimal uniform polar quantization. Int. J. Electron. Commun. 56, 345-347, 2002.
  • [8] J. Boluda and F. Pardo: Space variant image processing: taking advantage of data reduction and polar coordinates. Electronic Imaging 14, 1-12, 2004.
  • [9] H.M. Gomes and R.B. Fisher: Learning and extracting primal-sketch features in a log-polar image representation. Proc. Brazilian Symp. on Computer Graphics and Image Processing, Florianopolis, 338-345, 2001.
  • [10] T. Masuda: Log-polar height maps for multiple range image registration. Comput. Vis. Image Und. 113, 1158-1169, 2009.
  • [11] G. Metta, A. Gasteratos, and G. Sandini: Learning to track colored objects with log-polar vision. Mechatronics 14, 989-1006, 2004.
  • [12] A. Shortt, T. Naughton, and B. Javidi: A companding approach for nonuniform quantization of digital holograms of three-dimensional objects. Opt. Express 14, 5129-5134, 2006.
  • [13] V.J. Traver and F. Pla: Log-polar mapping template design: From task-level requirements to geometry parameters. Image Vision Comput. 26, 58-74, 2008.
  • [14] V.J. Traver and A. Bernardino: A review of log-polar imaging for visual perception in robotics. Robot. Auton. Syst. 58, 378-398, 2010.
  • [15] W.K. Wong, C.W. Choo, C.K. Loo, and J.P. Teh: FPGA implementation of log-polar mapping. Proc. 15th Int. Conf. on Mechatronics and Machine Vision in Practice (M2VIP08), Auckland, 45-50, 2008.
  • [16] A. Yeung and N. Barnes: Efficient active monocular fixation using the log-polar sensor. Int. J. Intell. Syst. 1, 157-173, 2005.
  • [17] E. Candès and J. Romberg: Sparsity and incoherence in compressive sampling. Inverse Probl. 23, 969-985, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0022-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.